Как измерить плотность тормозной магистрали


Проверка плотности тормозной и питательной магистрали локомотива.

Проверка плотности тормозной и питательной магистрали.

Проверяют при поездном положении ручек кранов машиниста усл. № 254 и № 394, перекрытом комбинированном кране и неработающих компрессорах. Падение давления по манометрам должно быть:

- в тормозной магистрали с нормального зарядного давления на величину не более 0,2 кгс/ кв. см за 1 минуту;

- в питательной магистрали с 8,0 кгс/ кв. см на величину не более 0,2 кгс/кв. см за 2,5 минуты. Перед указанной проверкой локомотив должен быть закреплен.

6.Защита дизеля тепловоза при перегреве воды и масла.

На тепловозе применено раздельное регулирование температуры воды, охлаждающей дизель, и температуры масла дизеля. Следовательно, в случае плохой работы охлаждающих устройств может произойти перегрев как воды, так и масла.

В связи с этим па тепловозе для защиты от перегрева масла и охлаждающей воды установлено комбинированное термореле типа КР-2, представляющее собой два совмещенных самостоятельных термоэлемента. Один термоэлемент настроен на температуру срабатывания 85° С и контролирует перегрев масла, другой элемент - на 92° С (95° С - на тепловозах с водомасляным охлаждением) и контролирует перегрев охлаждающей воды дизеля. Размыкающие контакты микропереключателей ТРМ и ТРВ, встроенных в термоэлементы, включены последовательно в цепь контактора возбуждения главного генератора КВ. При перегреве воды или масла разрывается цепь питания катушки КВ, а затем и ВВ, что вызывает снятие нагрузки.

Чтобы обеспечить включение нагрузки, необходимо понизить температуру воды, после чего поставить рукоятку контроллера в нулевое положение для разрыва цепи питания реле РУ8 (которое контролирует включение нагрузки только с I позиции), а затем вновь перевести рукоятку контроллера в нужное положение.

Схема подачи напряжения в цепи управления от аккамуляторной батареи

+АКБ -> F44 ->F1 -> SA3 ->замкнутый контакт КМ -> T2 -> L2 -> Дроссель -> SA1 ->SA2 ->ПРОВОД Э01 //Дроссель L1 -> SA1 -> SA2 -> ЭО3 ->Щиток автомата А25 -> корпус-> шунт Амперментра->SA3 -> F2 -> (-)АКБ

Порядок соединения частей поезда на перегоне при саморасцепе.

Порядок действий при выявлении разъединения (разрыва) поезда. Если при осмотре поезда выявлен саморасцеп или обрыв автосцепок, помощник машиниста обязан:
- принять меры к закреплению отцепившейся части поезда путем укладки тормозных башмаков со стороны уклона и приведя в действие имеющиеся ручные тормоза грузовых вагонов, согласно нормам закрепления;
- в пассажирском поезде через проводников вагонов привести в действие ручные тормоза каждого вагона отцепившейся части;
- убедится, что номер последнего вагона отцепившейся группы соответствует номеру, указанному в справке формы ВУ-45;
- доложить машинисту о закреплении отцепившихся вагонов, расстоянии между ними, состоянии их автосцепок и тормозных рукавов.
После получения информации от помощника машиниста машинист согласовывает дальнейшие действия с ДНЦ.
В пассажирском составе сообщить о саморасцепе начальнику поезда. Совместно с ним и поездным электромехаником после отключения высоковольтного кабеля отопления поезда произвести осмотр автосцепных устройств. При сохранении подвижности замков обеих автосцепок и отсутствии в них видимых неисправностей, помощник машиниста в присутствии начальника поезда должен произвести сцепление вагонов со скоростью осаживания головной части поезда не более 3 км/ч. Во время соединения начальник поезда находится в тамбуре вагона у исправного стоп-крана, осуществляет контроль за подъездом и сцеплением частей поезда.
В случае неисправности механизма одной из автосцепок разъединившихся вагонов после соединения состава поезда произвести замену внутреннего механизма автосцепки, снятого из автосцепки последнего вагона или локомотива.
При невозможности замены механизма, неисправности автосцепки, затребовать вспомогательный локомотив.
- в грузовом поезде проверить исправность механизма автосцепок и соединительных рукавов разъединившихся вагонов. После получения информации от помощника машиниста о выходе из межвагонного пространства, произвести соединение поезда, при этом осаживание головной части поезда следует производить с особой осторожностью, чтобы при сцеплении вагонов скорость не превышала 3 км/ч
- поврежденные тормозные рукава заменить запасными, а в случае их отсутствия, снять с хвостового вагона или переднего бруса локомотива;
После соединения на перегоне частей поезда произвести зарядку тормозов, сокращённое опробование тормозов по двум хвостовым вагонам, извлечь тормозные башмаки из-под вагонов, отпустить ручные тормоза и вывести оставшуюся часть поезда с перегона.
Запрещается соединять части поезда на перегоне:
а) во время тумана, метели и при других неблагоприятных условиях, когда сигналы трудно различимы;

б) если отцепившаяся часть находится на уклоне круче 2,5%о и от толчка при соединении может уйти в сторону, обратную направлению движения поезда.
Если соединить состав поезда невозможно, машинист обязан затребовать вспомогательный локомотив в хвост поезда, указав дополнительно в заявке точное расстояние между разъединившимися частями поезда.
При выводе части поезда с перегона необходимо оградить хвостовой вагон выводимой части поезда развернутым желтым флагом у буферного бруса с правой стороны, а ночью желтым огнем фонаря и записать номера хвостовых вагонов оставшейся части поезда и выводимой.
Запрещается оставлять на перегоне без охраны составы, в которых имеются вагоны с людьми и опасными грузами класса 1 (взрывчатыми материалами).
В случае обрыва автосцепных устройств вагонов машинист обязан заявить контрольную проверку тормозов.


БИЛЕТ №23

Проверка плотности тормозной магистрали в грузовом поезде. Случаи опробования тормозов

Сокращенное опробование автотормозов производится с целью проверки проходимости воздуха по тормозной магистрали от локомотива до хвостового вагона.

Сокращенное опробование выполняют:

 после прицепки поездного локомотива к составу, если полное опробование автотормозов было предварительно выполнено от компрессорной установки или другого локомотива;

 после смены локомотивных бригад, когда локомотив от поезда не отцепляется;

 после всякого разъединения рукавов в составе или между составом и локомотивом (кроме отцепки подталкивающего локомотива, включенного в тормозную магистраль), соединения рукавов вследствие прицепки подвижного состава, а также после перекрытия концевого крана в составе;

 в пассажирских поездах после стоянки поезда более 20 минут, при падении давления в главных резервуарах ниже 5,5 кгс/см 2 , при смене кабины управления или после передачи управления машинисту второго локомотива на перегоне после остановки поезда;

 в грузовых поездах, если при стоянке поезда произошло срабатывание автотормозов, изменилась плотность тормозной магистрали более чем на 20% от указанной в справке формы ВУ-45 , после стоянки поезда более 30 минут.

При выполнении сокращенного опробования тормозов по сигналу осмотрщика вагонов машинист выполняет разрядку тормозной магистрали на величину ступени торможения, как при полном опробовании, и устанавливает ручку крана машиниста в IV положение. Осмотрщик проверяет срабатывание тормозов двух хвостовых вагонов по выходу штока тормозного цилиндра и прижатию тормозных колодок к колесам. По сигналу осмотрщика «Отпустить тормоза» машинист отпускает тормоза установкой ручки крана машиниста в первое положение. В пассажирских поездах ручку крана машиниста выдерживают в этом положении до получения давления в уравнительном резервуаре 5,0 - 5,2 кгс/см 2 , а в грузовых и грузо-пассажирских поездах до давления в уравнительном резервуаре на 0,5 кгс/см 2 выше зарядного. После этого ручку крана машиниста переводят в поездное положение. Осмотрщик вагонов проверяет отпуск тормозов двух хвостовых вагонов по уходу штока тормозного цилиндра и отходу тормозных колодок от колес. В случае прицепки в хвост поезда группы вагонов осмотрщик проверяет работу тормозов у каждого прицепленного вагона.

На станциях, где должности осмотрщиков вагонов не предусмотрены, к сокращенному опробованию привлекаются работники, обученные выполнению операций по опробованию автотормозов (перечень должностей устанавливается начальником дороги).

После выполнения сокращенного опробования тормозов осмотрщик вагонов обязан сделать отметку в справку формы ВУ-45 о его выполнении, а машинист заносит в справку данные о плотности тормозной сети.

Если сокращенное опробование тормозов в поезде производится после полного опробования от компрессорной установки, то осмотрщики вагонов обязаны перед опробованием проверить плотность тормозной сети поезда при втором и четвертом положениях ручки крана машиниста, целостность тормозной магистрали, замерить зарядное давление в магистрали хвостового вагона, а при длине грузового поезда более 100 осей определить наибольшее время отпуска автотормозов двух хвостовых вагонов. По окончании опробования машинисту вручается справка формы ВУ-45 , как при полном опробовании.

Сокращенное опробование электропневматических тормозов выполняют в пунктах смены локомотивов и локомотивных бригад по действию тормозов двух хвостовых вагонов и при прицепке вагонов с проверкой действия тормозов у каждого прицепленного вагона. В пассажирских поездах сначала выполняется сокращенное опробование электропневматических тормозов, а затем автотормозов. Сокращенное опробование ЭПТ производится порядком, аналогичным их полному опробованию от локомотива. Отпуск тормозов производят кратковременным, на 1 - 2 секунды перемещением ручки крана машиниста в первое положение с последующим перемещением ее поездное положение. Срабатывание тормозов и их отпуск контролируют по лампам сигнализатора в кабине локомотива, а также прижатию и отходу тормозных колодок от колес двух хвостовых вагонов.

Без выполнения сокращенного опробования тормозов или с недействующими тормозами у двух хвостовых вагонов отправлять поезд на перегон запрещается.

Закончив опробование тормозов, осмотрщик-автоматчик головной части заполняет справку формы ВУ-45 в двух экземплярах, подписывает ее и один экземпляр вручает машинисту локомотива под расписку.

Сокращенное опробование тормозов производится в следующих случаях:
. после прицепки поездного локомотива к составу, если предварительно было сделано полное опробование автотормозов от станционной сети;
. после перемены кабины управления моторвагонного поезда и после смены локомотивных бригад, когда локомотив от поезда не отцепляется;
. после любого разъединения соединительных рукавов в составе поезда, соединения рукавов вследствие прицепки подвижного состава, а также после перекрытия концевого крана тормозной воздушной магистрали в составе поезда;
. после зарядки рабочих резервуаров механизма разгрузки хоппер-дозаторной вертушки на перегоне.

Сокращенное опробование автотормозов производится на пунктах технического осмотра без отцепки локомотива от поезда и на промежуточных станциях в случаях прицепки группы вагонов к поезду без переформирования состава, после производства работ по ремонту тормозов, связанных с их включением. В этих случаях обязательно проверяется действие тормозов у прицепляемой группы вагонов и у отремонтированных вагонов.

Выполняется сокращенное опробование автотормозов следующим образом. По сигналу осмотрщика-автоматчика машинист локомотива делает торможение снижением давления в магистрали грузовых и пассажирских поездов нормальной длины на 0,5-0,6 кГ/см2, длинно-составных пассажирских поездов на 0,7-0,8 кГ/см2, сдвоенных пассажирских поездов на 0,8-1,0 кГ/см2. Осмотрщик-автоматчик проверяет состояние тормозной сети поезда по действию тормоза последнего вагона. Убедившись, что последний вагон заторможен, он дает сигнал «Отпустить тормоза». Машинист производит отпуск, ставя ручку крана машиниста в первое положение с последующим переводом ее во второе (поездное) положение. При наличии полуавтоматического ускорителя отпуск выполняется с нажатием его кнопки. После получения ответного сигнала с локомотива осмотрщик-автоматчик убеждается, что тормозные колодки отошли от поверхности катания колес, т. е., что тормоз последнего вагона отпущен. На этом сокращенное опробование заканчивается.

Если сокращенное опробование тормозов производилось после переформирования состава поезда, то в имеющейся у машиниста локомотива справке о тормозах делается отметка о сокращенном опробовании и изменении состава. Такую отметку в справке делает осмотрщик-автоматчик или осмотрщик вагонов, а на станциях, где их нет, дежурный по станции.

Во всех других случаях отметка в справке о проведенном сокращенном опробовании тормозов не делается. Работник, производящий опробование автотормозов, обязан не допустить отправления поезда, если в

Плотность тормозной и питательной сети локомотива.

Проверять при поездном положении ручек крана №254 и №395, при перекрытом комбинированном кране и не работающих компрессорах.

Снижение давления в ТМ с нормального зарядного на величину не более чем на 0,2 кгс/см2 в течении 1 минуты, питательной сети с 8,0 кгс/см2 на величину не более чем на 0,2 кгс/см в течении 2,5 минут или не более 0,5 кгс/см2 в течении 6,5 минут.

 

Плотность тормозных цилиндров локомотива.

Ручку крана №254 перевести в последнее тормозное положение. Когда в ТЦ ус­тановится максимальное давление, перевести ключ блокировочного устройства №367 из нижнего положения в верхнее и вынуть его (или перекрыть разобщительный кран на воздухопроводе к ТЦ).

Допускается снижение давления в ТЦ не более 0,2 кгс/см2 в 1 минуту или 0,5 кгс/см за 2,5 минуты.

 

Приемка локомотива.

Недостаточная проходимость блокировочного устройства, крана машиниста, тормозной и питательной магистралей – вызывает замедленный отпуск тормозов.

Неисправность крана машиниста – тормоза неуправляемы (проезд сигнала, обрыв автосцепки и др.)

При приемке локомотива машинист должен лично проверить:

Проходимость блокировки №367 и КМ №395 должна быть не более:

 

Блокировка №367 КМ №394

ВЛ-10 не более 18 сек 30 сек

ВЛ-10к (2-х секц) не более 25 сек 41 сек

2ЭС4К не более 25 сек 41 сек

УБТ КМ №130

2ЭС6 не более 24 сек 40 сек

 

Произвести проверку кранов машиниста №394, №254, работу воздухорас­пределителя.

1. Закрепить локомотив от самопроизвольного ухода.

2. Отпустить вспомогательный тормоз краном №254.

3. Ручку крана №394 поставить в поездное положение, зарядить ТМ по манометру УР.

4. Проверить плотность УР: Поставить ручку крана №394 из 2-го в 4-е положение и следить за темпом снижения давления в УР, которое не должно превышать 0,1 кгс/см2 в 3 мин. Завышение при этом не допускается.

5. Проверить чувствительность ВР к торможению.

Краном №394 снизить давление по УР на 0,5-0,6 кгс/см2, при ВР действующем через кран №254 на 0,7-0,8 кгс/см2.

6. Проверить чувствительность ВР к отпуску.

Поставить ручку крана машиниста №394 во 2-е положение при котором тормоз должен отпустить, колодки отойти от колес.

7. Проверить темп ликвидации сверхзарядного давления.

После отпуска тормозов ручку крана поставить в 1-е положение и завысить давление в УР до 6,5-6,8 кгс/см2, засечь время снижения давления по манометру УР с 6,0 до 5,8 кгс/см2 за 80-120 сек. Сигнализатор Д-418 не должен срабатывать.

8. Проверить работу датчика обрыва ТМ.

Выполнить разрядку краном машиниста на 0,2-0,3 кгс/см2, поставить в перекрышу с питанием – лампочка (обрыв ТМ) должна загореться, схема тяги не должна собираться.

9. Работу крана №254 на наполнение ТЦ до давления 3,8-4,0 кгс/см2 за время 4-6сек

10. Отсутствие недопустимого снижения давления в ТЦ

Для этого произвести экстренное торможение и после полной разрядки тормозной магистрали ручку крана №254 перевести в последнее тормозное положение наполнив тормозные цилиндры до полного давления.

Время наполнения ГР проверять на тепловозах при работе дизеля на нулевой позиции контроллера. Время наполнения ГР на локомотивах указано для одного компрессора.

После этого на локомотивах не оборудованных блокировочным устройством №367, перекрыть разобщительный кран на воздуховоде от крана №254 к ТЦ, а на локомотивах оборудованных блокировочным устройством №367 перевести ключ блокировочного устройства из нижнего в верхнее. Снижение давления в тормозных цилиндрах допускается темпом не более 0,2 кгс/см в 1 минуту.

11. Продуть клапан ЭПК, при этом проверить состояние плотности уравнительного поршня крана машиниста постановкой ручки крана в 4-е-положение – давление в УР не должно снижаться!

12 При приемке, локомотива проверить проходимость тормозной магистрали.

При продувке магистрали локомотива помощник машиниста открывает концевой кран на 4-6сек, в это время машинист переводит ручку крана машиниста в 1-е положение и наблюдает за давлением в ТМ, которое должно поддерживаться в пределах 2-3 кгс/см2 (если более 3 кгс/см2 возможно зауживание ТМ, если менее 2 кгс/см2 - заужена питательная магистраль).

 

 

Вероятная причина:

Неисправность реле давления БТО.

Метод устранения:На БТО перекрыть краны КрРШ1 и КрРШ5 для реле давления первой тележки или КрРШ2 и КрРШ6 для реле давления второй тележки.

 



Читайте также:

 

IV. 1.1 Полное опробование тормозов в грузовых поездах — В Поездку

48. При полном опробовании автоматических тормозов грузовых и грузопассажирских поездов выполняют:

  • проверку свободности прохождения сжатого воздуха до хвостового вагона состава поезда и целостности тормозной магистрали поезда. Проверку осуществляют после полной зарядки тормозной сети поезда путем открытия последнего концевого крана хвостового вагона на 8-10 секунд;
  • установку измерительного устройства для измерения давления в тормозной магистрали хвостового вагона;
  • замер времени отпуска автотормозов у двух последних вагонов в хвосте состава после ступени торможения 0,5-0,6 кгс/см2(0,05-0,06 МПа) и получения информации о переводе машинистом управляющего органа крана машиниста в отпускное положение до начала отхода колодок от колес;
  • проверку плотности тормозной магистрали поезда.

На грузовых локомотивах, оборудованных устройством контроля плотности тормозной магистрали, проверку плотности производить по показанию этого устройства.

При поездном положении управляющего органа крана машиниста проверку проводят после отключения компрессоров по достижении в главных резервуарах локомотива предельного давления и последующего снижения этого давления на 0,04‑0,05 МПа (0,4‑0,5 кгс/см2) с замером времени дальнейшего снижения давления на 0,05 МПа (0,5 кгс/см2).

Для поездов с локомотивами в голове наименьшее допустимое время снижения давления при проверке плотности тормозной магистрали в зависимости от длины состава и объема главных резервуаров локомотивов указано в таблице IV.1 настоящих Правил.

Таблица IV.1— Время снижения давления на 0,05 МПа (0,5 кгс/см2) в главных резервуарах при проверке плотности тормозной магистрали грузового поезда

Общий объем главных резервуаров локомотива, л

Время, с, при длине состава в осях

до 100

101-150

151-200

201-250

251-300

301-350

351-400

401-450

451-480

481-530

1000

58

40

29

25

23

20

17

15

13

11

1200

69

46

34

29

25

22

20

18

15

13

1500

80

58

46

34

31

26

23

21

17

15

1800

98

69

52

46

38

33

29

26

22

20

2000

104

75

58

52

40

36

32

29

24

22

2500

129

93

71

64

51

45

40

36

30

28

3000

207

138

102

87

75

66

60

51

45

33

Примечания:

    1. При проверке плотности тормозной магистрали грузового поезда при зарядном давлении 0,52-0,55 МПа (5,3-5,6 кгс/см2) норму времени указанную в таблице уменьшить на 10%.
    2. При работе по системе многих единиц, когда главные резервуары локомотивов соединены в общий объем, указанное время увеличивать пропорционально изменению объемов главных резервуаров.
  1. При общем объеме главных резервуаров локомотива, отличном от представленного в таблице, объем принимать по ближайшему наименьшему объему, приведенному в таблице.
  2. На каждом локомотиве на видном месте должна быть выписка с указанием общего объёма главных резервуаров.

После снижения давления в тормозной магистрали поезда на 0,06‑0,07 МПа (0,6‑0,7 кгс/см2) в положении, обеспечивающим поддержание заданного давления в тормозной магистрали после торможения необходимо замерить плотность тормозной магистрали поезда которая не должна отличаться от плотности при поездном положении управляющего органа крана машиниста более чем на 10 % в сторону уменьшения;

  • замер зарядного давления в тормозной магистрали хвостового вагона. Замер давления в тормозной магистрали хвостового вагона поезда выполнять после полной зарядки тормозной магистрали всего поезда и проверки целостности тормозной магистрали. Показания давления в тормозной магистрали хвостового вагона при поездном положении управляющего органа крана машиниста не должны отличаться более чем:

а) на 0,03 МПа (0,3 кгс/см2) от зарядного давления в кабине машиниста (в голове) при длине поезда до 300 осей;

б) на 0,05 МПа (0,5 кгс/см2) при длине поезда более 300 до 400 осей включительно;

в) на 0,07 МПа (0,7 кгс/см2) при длине поезда более 400 осей;

  • проверку действия автоматических тормозов вагонов поезда на торможение и отпуск. Проверку проводят после снижения давления в тормозной магистрали поезда на 0,06-0,07 МПа (0,6‑0,7 кгс/см2) с зарядного давления с последующим переводом управляющего органа крана машиниста в положение, обеспечивающее поддержание заданного давления в тормозной магистрали после торможения, по истечении 120 секунд (2 минут) для грузовых поездов, у которых все воздухораспределители включены на равнинный режим, и 600 секунд (10 минут) – при воздухораспределителях, включенных на горный режим.

Осмотрщики вагонов обязаны проверить состояние и действие тормозов по всему поезду у каждого вагона и убедиться в их нормальной работе на торможение по выходу штока тормозных цилиндров и прижатию колодок к поверхности катания колес.

После окончания проверки действия тормозов на торможение и последующий отпуск, осмотрщики вагонов обязаны проверить отпуск тормозов по всему поезду у каждого вагона и убедиться в их нормальной работе на отпуск по уходу штока тормозных цилиндров и отхода колодок от поверхности катания колес.

В грузовых поездах повышенной длины (длиной более 350 осей) отпуск автотормозов производить постановкой управляющего органа крана машиниста в отпускное положение до получения давления в уравнительном резервуаре на 0,05‑0,06 МПа (0,5-0,6 кгс/см2) выше зарядного давления.

При выявлении, не сработавших на отпуск, воздухораспределителей не разрешается выполнять их отпуск вручную до выяснения причин неотпуска. Все выявленные неисправности тормозного оборудования на вагонах должны быть устранены и действие тормозов у этих вагонов вновь проверено.

  • демонтаж измерительного устройства для измерения давления в тормозной магистрали хвостового вагона.

По окончании полного опробования тормозов выдается «Справка об обеспечении поезда тормозами и исправном их действии».

Поделиться ссылкой:

Понравилось это:

Нравится Загрузка...

Похожее

Плотность тормозной системы — Студопедия

Важным показателем состояния тормозной системы в эксплуатации является наличие утечек сжатого воздуха через неплотности. Плотность тормозной сети систематически проверяют при опробовании заряженных тормозов. В пассажирских поездах после прекращения испытания тормозной магистрали сжатым воздухом через кран машиниста допускается снижение давления в ней не более 0,02 МПа в течение мин, что соответствует утечке примерно 18 - 20 л воздуха на один вагон. В грузовых поездах нормы допускаемых наибольших утечек такие же, однако,метод их проверки другой. Поскольку запасный резервуар воздухораспределителей № 270 и 483 вагона отключен обратным клапаном от тормозной магистрали, допустимая утечка воздуха вызывает быстрое снижение давления и срабатывание тормоза. Поэтому плотность тормозной сети грузового поезда проверяют по время снижения давления в главных резервуарах локомотива в зависимости от длины состава и объема главных резервуаров после выключения компрессоров регулятором давления и снижения давления в резервуарах на 0,04—0,05 МПа.

В главных резервуарах объемом 1000 л снижение давления на 0,05 МПа должно происходить не быстрее чем за 50 с составе до 100 осей; 35 с - 101 - 150 осей; 25 с - 151 - 200 осей; 22 с - 201 - 250 осей; 20 с - 251 - 300 осей; 17 с - 301 - 350 осей; 15 с - 351 – 400 осей; 13 с - 401 - 450 осей. При другом объеме резервуаров норма времени пропорционально изменяется.


При выпуске вагонов из ремонта допускается утечка воздуха магистрального трубопровода при зарядном давлении 0,6 МПа и отключенном воздухораспределителе, которая вызывает падение давления не более 0,01 МПа за 5 мин.

Утечки происходят в основном по резьбовым соединениям, особенно при некачественном выполнении резьбы и подмотки в результате плохого крепления воздухопроводов и арматуры, а также рабочих камер, запасных резервуаров и тормозных цилиндров. Утечки приводят к усиленной работе компрессоров локомотивов и подаче в тормозную магистраль неохлажденного сжатого воздуха с повышенным содержанием влаги, что в зимнее время может вызвать замораживание тормозной или питательной магистрали. При наличии утечек замедляются отпуск и зарядка тормозов, ухудшается их неистощимость при частых повторных торможениях.

Особенно неблагоприятно влияют на работу тормозов утечки в хвостовой части поезда, вызывая повышенный перепад давлений по длине магистрали, снижающий эффективность тормозных средств. При наибольшей допускаемой равномерно распределенной утечке разница давлений в тормозной магистрали головной и хвостовой частей поезда достигает 0,007 МПа при длине поезда 500 м, 0,02 МПа - при длине 1000 м и 0,06 МПа - при длине 1500 м.


Место утечек воздуха обнаруживают в эксплуатации на слух и по темным масляным пятнам. При ремонте подвижного состава плотность мест соединений проверяют обмыливанием.

Чтобы плотность тормозной сети не ухудшалась в процессе эксплуатации, необходимо правильно и надежно монтировать воздухопроводы и арматуру, прочно крепить трубы к раме вагона, не допускать ослабления креплений рабочей камеры, запасного резервуара и тормозного цилиндра, следить за плотностью фланцевых соединений, применять при возможности сварные соединения труб вместо резьбовых.

Плотность - тормозная сеть - Большая Энциклопедия Нефти и Газа, статья, страница 1

Плотность - тормозная сеть

Cтраница 1

Плотность тормозной сети в поезде проверяется по манометру, показывающему давление в главных резервуарах при поездном положении ручки крана машиниста. Для этого после полной зарядки тормозной сети и отключения компрессоров после повышения давления в главных резервуарах до максимального и последующего снижения давления в главных резервуарах от предельного на 0 04 - 0 05 МПа необходимо замерить время дальнейшего падения давления в главных резервуарах на 0 05 МПа. Оно должно быть не меньше допустимого, определяемого по таблицам в зависимости от числа осей в поезде, типа локомотива.  [1]

Плотность тормозной сети определяется как время снижения давления в главных резервуарах на 0 05 МПа в секундах.  [2]

Плотность тормозной сети в поезде проверяется по манометру, показывающему давление в главных резервуарах при поездном положении ручки крана машиниста. Оно должно быть не меньше допустимого, определяемого по таблицам в зависимости от числа осей в поезде и типа локомотива.  [3]

Чтобы плотность тормозной сети оставалась стабильной в процессе эксплуатации, необходимо правильно и надежно монтировать воздухопроводы и арматуру, прочно крепить трубы к раме вагона, следить за плотностью фланцевых соединений, применять при возможности сварные соединения труб вместо резьбовых.  [4]

На плотность тормозной сети в составах также должно быть обращено серьезное внимание, так как увеличение утечки воздуха приводит к перегреву компрессоров ( насосов) и нагнетанию нагретого воздуха в тормозную сеть, который, охлаждаясь в ней до окружающей температуры наружного воздуха, будет выделять влагу. Последняя при минусовой температуре замерзает, образует ледяные покровы на поверхности деталей пневматических приборов и ледяные пробки в узких сечениях воздухопроводов, отчего нарушается нормальная работа тормозов. При отпуске же время отпуска и зарядки автотормозов увеличивается, чем затягивается готовность их к следующему торможению, а при применении повторных торможений без достаточной подзарядки приводит к пониженной эффективности торможения и истощению автотормозов.  [5]

Как проверяют плотность тормозной сети состава на ПТО.  [6]

Для проверки плотности тормозной сети необходимо ее зарядить при поездном положении ручки крана машиниста давлением 0 53 - 0 55 МПа ( 5 3 - 5 5 кгс / см2) на грузовых локомотивах и 0 50 - 0 52 МПа ( 5 - 5 2 кгс / см2) на пассажирских. При этом дать выдержку 4 - 5 мин для выравнивания давления в сети и запасных резервуарах.  [7]

Для проверки плотности тормозной сети в грузовых поездах необходимо ее и главные резервуары на локомотиве зарядить установленными давлениями. Когда произойдет отключение компрессоров ( паро-воздушных насосов на паровозе, причем в этот момент нужно закрыть паровыпускной вентиль к насосу) и давление в главных резервуарах снизится от максимального на 0 4 - 0 5 кГ / см2, заметить время дальнейшего падения давления в главных резервуарах на 0 5 кГ / см2 при поездном положении ручки крана машиниста.  [8]

На станции проверяют плотность тормозной сети поезда, правильность включения груженого режима в соответствии с загрузкой вагона, горного и равнинного режимов в соответствии с профилем пути и при прицепке грузовых вагонов к пассажирскому поезду, а также длинносоставного и короткого режимов в соответствии с количеством вагонов в пассажирском поезде и при пересылке пассажирских вагонов в грузовом поезде. Кроме того, на вагонах проверяют действие авторежимов и регуляторов выхода штока тормозных цилиндров, правильность установки на вагон композиционных и чугунных колодок в соответствии с положением валиков и затяжки горизонтальных рычагов ( см. рис. 14), правильность регулировки рычажной передачи, положение ручных тормозов. На локомотиве проверяют работу крана машиниста, стабильность поддержания давления в тормозной магистрали при поездном положении ручки крана и перекрыше после ступени торможения, пределы регулировки давления в главных резервуарах, действие автотормоза, проходимость воздуха через блокировочное устройство тормозов усл. Проходимость считается нормальной, если при I положении ручки крана машиниста и открытии концевого крана со стороны проверяемой блокировки падение давления с 6 до 5 кГ / см2 в главных резервуарах происходит за время, указанное на стр.  [9]

Данные о проверке плотности тормозной сети грузовых поездов с локомотивами в составе или хвосте поезда с объединенной тормозной магистралью осмотрщик вагонов записывает в общую справку формы ВУ-45 с внесением номера и данных о массе поезда и количестве осей в нем и выдает ее машинисту головного локомотива. Тормозное нажатие в таких поездах принимают по наименьшему значению из объединенных составов.  [10]

В составах пассажирских поездов плотность тормозной сети проверяют путем отсоединения ее от питательной станционной сети перекрытием комбинированного ( разобщительного) крана и замером величины падения давления в течение 1 мин определяют фактическую плотность сети. Эта величина не должна быть более 0 2 кГ / см2 за мин. К таким воздухораспределителям относятся: скоро-действующие тройные клапаны и воздухораспределители усл. Что же касается воздухораспределителей усл. Поэтому проверять плотность тормозной магистрали, так же как это делается в составе пассажирского поезда, и принимать за норму утечки абсолютную ее величину 0 2 кГ / см2 в 1 мин нельзя. В связи с этим в грузовых поездах или в отдельном его составе плотность тормозной магистрали проверяют с подключением к объему магистрали состава объем главных резервуаров локомотива или резервуар ПТО и устанавливают норму плотности, эквивалентную величине 0 2 кГ / см2 в 1 мин в зависимости от подключенного объема резервуара и длины состава. Этот метод проверки заключается в следующем. К тормозной магистрали проверяемого состава подключают резервуар объемом 1000 л через кран машиниста, ручка которого находится в поездном положении.  [11]

При полном опробовании обязательно проверяют плотность тормозной сети поезда.  [12]

При полном опробов

Плотность и измерение плотности :: Anton Paar Wiki

Современные цифровые плотномеры основаны на принципе колеблющейся U-образной трубки. Трубка, обычно U-образная стеклянная трубка, возбуждается и начинает колебаться с определенной частотой в зависимости от залитого образца. Путем определения соответствующей частоты можно рассчитать плотность образца.

С 1967 года, когда был выпущен первый в мире цифровой плотномер, и до 2018 года, все настольные плотномеры работали в соответствии с «методом принудительных колебаний» по принципу U-образной трубки.Однако сейчас эта технология достигла своих пределов. Улучшенный метод использования принципа U-образной трубки - метод импульсного возбуждения - доступен с 2018 года. Для получения дополнительной информации см. Здесь.

Цифровые плотномеры

, основанные на принципе колеблющейся U-образной трубки, являются очень эффективными приборами, которые позволяют быстро и точно измерять плотность жидкости в широком диапазоне температуры и давления. Они измеряют истинную плотность (плотность в вакууме), поэтому нет влияния плавучести воздуха или силы тяжести.

В отличие от традиционных статических методов (таких как ареометры, пикнометры или гидростатическое взвешивание) требуется только небольшое количество образца, прибл. От 1 мл до 2 мл. Цифровые плотномеры просты в эксплуатации и не предъявляют особых требований к условиям окружающей среды или контролю температуры. [17] [21]

Современные высокоточные плотномеры дополнительно обеспечивают коррекцию вязкости, даже определение вязкости и эталонный генератор для получения точных результатов в большом диапазоне плотностей, температур и вязкостей.

Колебание ячейки вызвано механическим или электронным способом. Константы прибора (которые используются для настройки плотномера) используются для вычисления плотности образца на основе его частоты колебаний или периода колебаний.

Подробное сравнение различных качающихся U-образных трубок см. Здесь.

Если вы в настоящее время выполняете измерения плотности с помощью ареометра или пикнометра, вы можете проверить здесь, сколько денег и времени вы бы сэкономили, используя цифровой плотномер или цифровой ареометр.Окупаемость инвестиций зависит от количества образцов, которые вы измеряете в день.

.

Определение относительной плотности - MEL Chemistry

Плотность воды часто используется для расчета относительной плотности. [Викимедиа]

Плотность - это физическая величина, равная отношению массы вещества к его объему. Это значение измеряется в г / см³ [кг / м³].

ρ = м / В.

Часто при определении плотности водных растворов для стандартной плотности используется плотность чистой воды, которая при нормальных условиях приблизительно равна 1 г / см³.Для удобства расчета часто используется относительная плотность вещества.

через GIPHY

Относительная плотность

Относительная плотность - это величина, определяемая как отношение плотности исследуемого вещества к плотности вещества, выбранного в качестве «стандарта» в данном случае. Относительная плотность - безразмерная величина, так как при ее определении одно значение плотности делится на другое. Учитывается не только изменение числового значения параметра, но и изменение его размерности - если размерность делится сама на себя, она полностью уменьшается:

d = P / P₀ (плотность данного вещества - Р, плотность эталонного вещества - Р).

Условия могут быть указаны после d. Например, d²⁰₄ означает, что плотность была рассчитана при 20 C (68 ᵒF), и что плотность воды при 4 ᵒC (39,2 F) была принята за стандарт.

Щелкните здесь, чтобы провести интересные эксперименты с водой.

В случае воды обычно не видно принципиальных различий между плотностью вещества и его относительной плотностью, поскольку плотность воды округляется до 1.Наличие или отсутствие измерения ценности помогает нам точно определить, какое значение определяется - относительное или нет.

[Викимедиа]

Иногда относительную плотность также определяют для газов по аналогичному принципу:

Dₐᵢᵣ = Mᵣ (газ) / Mᵣ ₐᵢᵣ (плотность газа по воздуху определяется как отношение относительной молекулярной массы газа к относительной молекулярной массе воздуха, которая всегда равна 29 ).Вместо воздуха в качестве стандарта можно использовать любой другой газ.

Что может повлиять на значение плотности

Значение относительной, так же как и обычной плотности, не является постоянным значением даже для одних и тех же веществ. В зависимости от температуры окружающей среды значение может увеличиваться или уменьшаться (зависимость плотности необходимого вещества от атмосферных условий может быть найдена из справочных таблиц или определена приборами в серии экспериментов с различными условиями).

Например, при 20 ᵒC (68 ᵒF) плотность дистиллированной воды составляет 998,203 кг / м³, а при 4 ᵒC (39,2 F) - 999,973 соответственно. При точном определении относительной плотности эти различия могут повлиять на конечный результат.

Пикнометр [Викимедиа]

Как измерить относительную плотность

Относительную плотность при той же температуре можно измерить пикнометром - сначала его взвешивают пустым, затем стандартным веществом (например, дистиллятом), а затем исследуемым веществом.В некоторых случаях для определения относительной плотности используется ареометр, но точность результатов ниже.

Примеры расчетов

Если плотности двух веществ задаются при решении задачи, чтобы найти относительную плотность, определенную плотность просто нужно разделить на стандарт. Например, если плотность раствора соляной кислоты составляет 1,150 кг / м³, а стандартная плотность серной кислоты составляет около 1.800 кг / м³, тогда плотность соляной кислоты , деленной на серную кислоту, составит:

3D-структура серной кислоты [Викимедиа]

d = P / P₀ = 1150/1800 = 0,64.

Для газов используется молекулярная масса. Таким образом, плотность хлора Cl₂, разделенного на воздух, составляет:

Dₐᵢᵣ = Mᵣ (Cl₂) / Mᵣ ₐᵢᵣ = 71/29 = 2,45.

Хлор [Викимедиа]

На практике расчеты относительной плотности часто используются для упрощенных оценок.

.

Измерения и анализ ошибок

«Лучше быть примерно правым, чем совершенно неправым». - Алан Гринспен

Неопределенность измерений

Некоторые числовые утверждения точны: у Мэри 3 брата, и 2 + 2 = 4. Однако все измерений имеют некоторую степень неопределенности, которая может быть получена из разных источников. Процесс оценки неопределенности, связанной с результатом измерения, часто называется анализом неопределенности или анализом ошибки .Полный отчет об измеренном значении должен включать оценку уровня уверенность, связанная с ценностью. Правильное сообщение экспериментального результата с его неопределенностью позволяет другим людям судить о качестве экспериментируйте, и это облегчает значимые сравнения с другими аналогичными значениями или теоретическое предсказание. Без оценки неопределенности невозможно ответить на основной научный вопрос: «Согласуется ли мой результат с теоретическим предсказанием или результатами из других экспериментов? »Этот вопрос является основополагающим для принятия решения о том, гипотеза подтверждена или опровергнута.Когда мы проводим измерения, мы обычно предполагаем, что существует какое-то точное или истинное значение в зависимости от того, как мы определяем, что измеряется. Хотя мы, возможно, никогда не узнаем это истинное значение точно, мы пытаемся найти это идеальное количество в меру наших возможностей с помощью время и ресурсы. Поскольку мы проводим измерения разными методами или даже при выполнении нескольких измерений одним и тем же методом, мы можем получить немного разные результаты. Итак, как мы сообщаем о наших результатах для наилучшей оценки этого неуловимого истинного значения ? Самый распространенный способ показать диапазон значений, который, по нашему мнению, включает истинное значение:

(1)

измерение = (наилучшая оценка ± неопределенность) единиц

Возьмем пример.Предположим, вы хотите найти массу золотого кольца, которое вы хотел бы продать другу. Вы не хотите подвергать опасности свою дружбу, поэтому вы хотите чтобы получить точную массу кольца по справедливой рыночной цене. Вы оцениваете масса должна составлять от 10 до 20 граммов в зависимости от того, насколько тяжелым он ощущается в руке, но это не очень точная оценка. После некоторых поисков вы найдете электронные весы, которые массовое чтение 17,43 грамма. Хотя это измерение намного точнее , чем исходная оценка, откуда вы знаете, что это , точная , и насколько вы уверены, что это измерение представляет собой истинное значение массы кольца? Поскольку цифровой дисплей баланс ограничен двумя знаками после запятой, вы можете указать массу как

м = 17.43 ± 0,01 г.

Предположим, вы используете те же электронные весы и получили еще несколько показаний: 17,46 г, 17,42 г, 17,44 г, так что средняя масса находится в диапазоне

17,44 ± 0,02 г.

Теперь вы можете быть уверены, что знаете массу этого кольца с точностью до ближайшего сотые доли грамма, но откуда вы знаете, что истинная ценность определенно лежит между 17,43 г и 17,45 г? Если честно, вы решили использовать другой баланс, который дает значение 17.22 г. Это значение явно ниже диапазона значений, найденных на первый баланс, и при нормальных обстоятельствах вам может быть все равно, но вы хотите быть справедливым своему другу. Так что вы будете делать теперь? Ответ заключается в том, чтобы знать кое-что о точность каждого инструмента. Чтобы ответить на эти вопросы, мы должны сначала определить термины точность и точность : Точность - это степень соответствия измеренного значения истинному или принятому значению.Ошибка измерения - это величина неточности.

Точность - это мера того, насколько хорошо результат может быть определен (без ссылки на теоретическое или истинное значение). Это степень согласованности и согласия между независимыми измерениями одной и той же величины; а также надежность или воспроизводимость результата.

Неопределенность Оценка , связанная с измерением, должна учитывать как точность, так и прецизионность измерения.

Примечание: К сожалению, термины ошибка и неопределенность часто используются как взаимозаменяемые для обозначения описать как неточность, так и неточность. Это использование настолько распространено, что невозможно чтобы полностью избежать. Когда вы сталкиваетесь с этими условиями, убедитесь, что вы понимаете относятся ли они к точности или точности, или к тому и другому. Обратите внимание, что для определения точности конкретного измерения мы имеем знать идеальную, истинную ценность.Иногда у нас есть "учебное" измеренное значение, которое хорошо известно, и мы предполагаем, что это наше "идеальное" значение, и используем его для оценки точность нашего результата. В других случаях мы знаем теоретическое значение, которое рассчитывается из основные принципы, и это тоже можно принять за «идеальное» значение. Но физика - это эмпирическая наука, что означает, что теория должна быть подтверждена экспериментом, а не наоборот. Мы можем избежать этих трудностей и сохранить полезное определение понятия точность , если предположить, что даже если мы не знаем истинного значения, мы можем полагаться на наилучшее из имеющихся принятое значение , с которым сравнивается наше экспериментальное значение.В нашем примере с золотым кольцом нет приемлемого значения для сравнения, и оба измеренных значения имеют одинаковую точность, поэтому у нас нет оснований полагать, что больше, чем другие. Мы могли бы найти характеристики точности для каждого весов как предоставленные производителем (приложение в конце этого лабораторного руководства содержит данные о точности для большинства инструментов, которые вы будете использовать), но лучший способ оценить точность измерения следует сравнить с известным стандартом .В этой ситуации это может быть возможность калибровки весов с помощью стандартной массы, которая является точной в узком допуска и прослеживается к стандарту первичной массы в Национальном институте Стандарты и технологии (NIST). Калибровка весов должна устранить несоответствие показаний и более точного измерения массы. Прецизионность часто выражается количественно с использованием относительной или дробной неопределенности :

(2)

Относительная неопределенность =
неопределенность
измеренное количество
Пример:

м = 75.5 ± 0,5 г

имеет дробную погрешность:

Точность часто выражается количественно с помощью относительной ошибки :

(3)

Относительная ошибка =
измеренное значение - ожидаемое значение
ожидаемое значение
Если ожидаемое значение для м составляет 80,0 г, тогда относительная ошибка будет:

Примечание: Знак минус означает, что измеренное значение на меньше , чем ожидаемое. значение.

При анализе экспериментальных данных важно понимать разницу между точностью и точностью. Точность указывает качество измерения без какой-либо гарантии, что измерение "правильное". Точность , с другой стороны, предполагает, что существует идеальное значение, и сообщает, насколько далеко ваш ответ от этого идеального, «правильного» ответа. Эти концепции напрямую связаны с случайными и систематическими ошибками измерения.

Типы ошибок

Ошибки измерения могут быть классифицированы как случайных или систематических , в зависимости от того, как было получено измерение (прибор может вызвать случайную ошибку в одной ситуации и систематическую ошибку в другой). Случайные ошибки - это статистические колебания (в любом направлении) измеренных данных из-за ограничений точности измерительного устройства. Случайные ошибки можно оценить с помощью статистического анализа и уменьшить путем усреднения по большому количеству наблюдений (см. Стандартную ошибку).

Систематические ошибки - это воспроизводимые неточности, которые имеют одно и то же направление. Эти ошибки трудно обнаружить и не поддаются статистическому анализу. Если систематическая ошибка обнаружена при калибровке по стандарту, применение поправки или поправочного коэффициента к компенсировать эффект можно уменьшить смещение. В отличие от случайных ошибок, систематические ошибки невозможно обнаружить или уменьшить путем увеличения количества наблюдений.

При проведении тщательных измерений наша цель - уменьшить как можно больше источников ошибок и отслеживать те ошибки, которые мы не можем устранить.Полезно знать типы ошибок, которые могут возникнуть, чтобы мы могли распознавать их, когда они возникают. Общие источники ошибок в лабораторных экспериментах по физике: Неполное определение (может быть систематическим или случайным) - Одна из причин, по которой это невозможно делать точные измерения - это то, что измерения не всегда четко определены. За Например, если два разных человека измеряют длину одной и той же строки, они вероятно, получат разные результаты, потому что каждый человек может натягивать веревку по-своему напряжение.Лучший способ минимизировать ошибки определения - это внимательно рассмотреть и указать условия, которые могут повлиять на измерение. Неспособность учесть фактор (обычно систематический) - самая сложная часть при разработке эксперимента пытается контролировать или учитывать все возможные факторы, кроме одна независимая переменная, которая анализируется. Например, вы можете случайно игнорируйте сопротивление воздуха при измерении ускорения свободного падения, иначе вы можете не учитывать влияние магнитного поля Земли при измерении поля вблизи небольшого магнита.Лучший способ учесть эти источники ошибок - провести мозговой штурм с коллегами по поводу все факторы, которые могут повлиять на ваш результат. Этот мозговой штурм нужно провести до начало эксперимента, чтобы спланировать и учесть вмешивающиеся факторы перед снятием данных. Иногда коррекция может применяться к результату после того, как принимает данные в учтите ошибку, которая не была обнаружена ранее. Факторы окружающей среды (систематические или случайные) - помните об ошибках, допущенных вашим непосредственная рабочая среда.Возможно, вам придется принять во внимание или защитить свои экспериментируйте с вибрациями, сквозняками, перепадами температуры, электронным шумом или другими эффекты от близлежащего оборудования. Разрешение прибора (случайное) - все инструменты имеют конечную точность, которая ограничивает способность устранять небольшие различия в измерениях. Например, измеритель не может быть используется для различения расстояний с точностью намного лучше, чем примерно половина его наименьшего деление шкалы (в данном случае 0,5 мм).Один из лучших способов получить более точную измерений заключается в использовании метода
нулевой разницы вместо прямого измерения количества. Null или balance методы включают использование inst.

Плотность воды | Глава 3: Плотность

Тебе это нравится? Не это нравится? Пожалуйста, поделитесь с нами своим мнением. Благодарность!

Урок 3.3

Ключевые понятия

  • Жидкости, как и твердые тела, имеют собственную характеристическую плотность.
  • Объем жидкости можно измерить непосредственно с помощью градуированного цилиндра.
  • Молекулы разных жидкостей имеют разный размер и массу.
  • Масса и размер молекул в жидкости, а также то, насколько плотно они упакованы вместе, определяют плотность жидкости.
  • Так же, как и твердое тело, плотность жидкости равна массе жидкости, деленной на ее объем; D = м / об.
  • Плотность воды 1 грамм на кубический сантиметр.
  • Плотность вещества одинакова независимо от размера образца.

Сводка

Учащиеся измеряют объем и массу воды, чтобы определить ее плотность. Затем они измеряют массу разных объемов воды и обнаруживают, что плотность всегда одинакова. Учащиеся составляют график зависимости между объемом и массой воды.

Объектив

Ученики смогут измерять объем и массу воды и рассчитывать ее плотность. Студенты смогут объяснить, что, поскольку любой объем воды всегда имеет одинаковую плотность при заданной температуре, эта плотность является характерным свойством воды.

Оценка

Загрузите лист активности учащегося и раздайте по одному учащемуся, если это указано в задании. Лист упражнений будет служить компонентом «Оценить» каждого плана урока 5-E.

Безопасность

Убедитесь, что вы и ваши ученики носите правильно подогнанные очки.

Материалы для каждой группы

  • Градуированный цилиндр, 100 мл
  • Вода
  • Весы с граммом (с точностью до 100 г)
  • Капельница

Материалы для демонстрации

  • Вода
  • Два одинаковых ведра или большие емкости
  1. Проведите демонстрацию, чтобы представить идею плотности воды.

    Материалы

    • Вода
    • Два одинаковых ведра или большие емкости

    Подготовка учителей

    Наполните одно ведро наполовину и добавьте примерно 1 стакан воды в другое.

    Процедура

    • Выберите ученика, который поднимет оба ведра с водой.
    • Спросите студента-добровольца, какое ведро имеет большую массу.

    Ожидаемые результаты

    Ведро с большим количеством воды имеет большую массу.

    Спросите студентов:

    В уроках 3.1 - Что такое плотность? и 3.2 - Метод вытеснения воды, вы нашли плотность твердых тел путем измерения их массы и объема. Как вы думаете, жидкость, такая как вода, может иметь плотность?
    Студенты должны понимать, что вода имеет объем и массу. Поскольку D = m / v, вода также должна иметь плотность.
    Как вы думаете, можно определить плотность жидкости, такой как вода?
    Ожидается, что на данный момент студенты не смогут полностью ответить на этот вопрос.Это сделано как начало расследования. Но студенты могут понять, что сначала им нужно каким-то образом определить массу и объем воды.
    Может ли и небольшое, и большое количество воды, которое поднял ваш одноклассник, иметь одинаковую плотность?
    Студенты могут указать, что ведро с большим количеством воды имеет большую массу, но больший объем. Ковш с меньшей массой имеет меньший объем. Таким образом, возможно, что разные количества воды могут иметь одинаковую плотность.

    Раздайте каждому учащемуся рабочий лист.

    Учащиеся записывают свои наблюдения и отвечают на вопросы о задании в листе действий. «Объясни это с помощью атомов и молекул» и «Возьми это». Дальнейшие разделы рабочего листа будут заполнены либо в классе, либо в группах, либо индивидуально в зависимости от ваших инструкций. Посмотрите на версию листа с заданиями для учителя, чтобы найти вопросы и ответы.

  2. Обсудите со студентами, как найти объем и массу воды.

    Сообщите студентам, что они попытаются найти плотность воды.

    Спросите студентов:

    Какие две вещи вам нужно знать, чтобы определить плотность воды?
    Студенты должны понимать, что им нужен объем и масса пробы воды, чтобы определить ее плотность.
    Как можно измерить объем воды?
    Предложите учащимся использовать мерный цилиндр для измерения объема в миллилитрах.Напомните учащимся, что каждый миллилитр равен 1 см 3 .
    Как можно измерить массу воды?
    Предложите учащимся использовать весы для измерения массы в граммах. Скажите студентам, что они могут набрать массу, взвесив воду. Однако, поскольку вода - это жидкость, она должна быть в каком-то контейнере. Таким образом, чтобы взвесить воду, они должны взвесить и контейнер. Объясните ученикам, что им придется вычесть массу пустого градуированного цилиндра из массы цилиндра и воды, чтобы получить массу только воды.
  3. Попросите учащихся найти массу различных объемов воды, чтобы показать, что плотность воды не зависит от размера образца.

    Вопрос для расследования

    Имеет ли разное количество воды одинаковую плотность?

    Материалы для каждой группы

    • Градуированный цилиндр, 100 мл
    • Вода
    • Весы с граммом (с точностью до 100 г)
    • Капельница

    Процедура

    1. Найдите массу пустого градуированного цилиндра.Запишите массу в граммах в таблице на рабочем столе.
    2. Налейте 100 мл воды в мерный цилиндр. Постарайтесь быть максимально точными, убедившись, что мениск находится прямо на отметке 100 мл. Используйте пипетку, чтобы добавить или удалить небольшое количество воды.

    3. Взвесьте мерный цилиндр с водой. Запишите массу в граммах.
    4. Найдите массу только воды, вычтя массу пустого градуированного цилиндра.Запишите в таблицу массу 100 мл воды.
    5. Используйте массу и объем воды для расчета плотности. Запишите в таблице плотность в г / см 3 .
    6. Слейте воду, пока в мерный цилиндр не будет 50 мл воды. Если вы случайно вылили слишком много воды, добавляйте воду, пока не дойдете до 50 мл.
    7. Найдите массу 50 мл воды. Запишите массу в листе деятельности. Рассчитайте и запишите плотность.

    8. Затем слейте воду, пока в мерном цилиндре не будет 25 мл воды. Найдите массу 25 мл воды и запишите ее в таблицу. Рассчитайте и запишите плотность.
    Таблица 1. Определение плотности различных объемов воды.
    Объем воды 100 миллилитров 50 миллилитров 25 миллилитров
    Масса мерного цилиндра + вода (г)
    Масса пустого градуированного цилиндра (г)
    Масса воды (г)
    Плотность воды (г / см 3 )

    Ожидаемые результаты

    Плотность воды должна быть близка к 1 г / см 3 .Это верно для 100, 50 или 25 мл.

    Спросите студентов:

    Посмотрите на свои значения плотности на диаграмме. Кажется ли, что плотность разных объемов воды примерно одинакова?
    Помогите учащимся увидеть, что большинство различных значений плотности составляют около 1 г / см 3 . Они могут удивиться, почему их значения не равны 1 г / см 3 . Одной из причин могут быть неточности в измерениях. Другая причина в том, что плотность воды зависит от температуры.Вода является наиболее плотной при 4 ° C и при этой температуре имеет плотность 1 г / см 3 . При комнатной температуре около 20–25 ° C плотность составляет около 0,99 г / см 3 .
    Какова плотность воды в г / см3?
    Ответы учащихся могут быть разными, но обычно их значения должны составлять около 1 г / см. 3 .
  4. Попросите учащихся построить график своих результатов.

    Помогите учащимся составить диаграмму из данных в их листе действий.Ось X должна быть объемом, а ось Y - массой.

    Когда ученики наносят на график свои данные, должна быть прямая линия, показывающая, что по мере увеличения объема масса увеличивается на ту же величину.

  5. Обсудите наблюдения, данные и графики учащихся.

    Спросите студентов:

    Используйте свой график, чтобы найти массу 40 мл воды. Какова плотность этого объема воды?
    Масса 40 мл воды 40 грамм.Поскольку D = m / v и mL = cm 3 , плотность воды составляет 1 г / см 3 .
    Выберите объем от 1 до 100 мл. Используйте свой график, чтобы найти массу. Какова плотность этого объема воды?
    Вне зависимости от того, весят ли ученики 100, 50, 25 мл или любое другое количество, плотность воды всегда будет 1 г / см 3 .

    Скажите студентам, что плотность - это характерное свойство вещества. Это означает, что плотность вещества одинакова независимо от размера образца.

    Спросите студентов:

    Является ли плотность характерным свойством воды? Откуда вы знаете?
    Плотность - характерное свойство воды, потому что плотность любого образца воды (при той же температуре) всегда одинакова. Плотность 1 г / см 3 .
  6. Объясните, почему плотность воды любого размера всегда одинакова.

    Спроецировать изображение Плотность воды.

    Все молекулы воды имеют одинаковую массу и размер. Молекулы воды также расположены довольно близко друг к другу. Они упакованы одинаково во всей пробе воды. Итак, если объем воды имеет определенную массу, удвоенный объем будет иметь удвоенную массу, трехкратный объем будет иметь трехкратную массу и т. Д. Независимо от того, какой размер образца воды вы измеряете, соотношение между массой и объемом всегда будет таким же. Поскольку D = m / v, плотность одинакова для любого количества воды.

    Спроектируйте анимацию «Жидкая вода».

    Молекулы воды всегда в движении. Но в среднем они все упакованы одинаково. Следовательно, соотношение между массой и объемом такое же, что и плотность. Это верно независимо от размера выборки или от того, где вы ее выбираете.

.

Единица плотности - определение плотности, единица СИ, решенные примеры

    • БЕСПЛАТНАЯ ЗАПИСЬ КЛАСС
    • КОНКУРСНЫЕ ЭКЗАМЕНА
      • BNAT
      • Классы
        • Класс 1–3
        • Класс 4-5
        • Класс 6-10
        • Класс 110003 CBSE
          • Книги NCERT
            • Книги NCERT для класса 5
            • Книги NCERT, класс 6
            • Книги NCERT для класса 7
            • Книги NCERT для класса 8
            • Книги NCERT для класса 9
            • Книги NCERT для класса 10
            • NCERT Книги для класса 11
            • NCERT Книги для класса 12
          • NCERT Exemplar
            • NCERT Exemplar Class 8
            • NCERT Exemplar Class 9
            • NCERT Exemplar Class 10
            • NCERT Exemplar Class 11
            • 9plar
            • RS Aggarwal
              • RS Aggarwal Решения класса 12
              • RS Aggarwal Class 11 Solutions
              • RS Aggarwal Решения класса 10
              • Решения RS Aggarwal класса 9
              • Решения RS Aggarwal класса 8
              • Решения RS Aggarwal класса 7
              • Решения RS Aggarwal класса 6
            • RD Sharma
              • RD Sharma Class 6 Решения
              • RD Sharma Class 7 Решения
              • Решения RD Sharma Class 8
              • Решения RD Sharma Class 9
              • Решения RD Sharma Class 10
              • Решения RD Sharma Class 11
              • Решения RD Sharma Class 12
            • PHYSICS
              • Механика
              • Оптика
              • Термодинамика
              • Электромагнетизм
            • ХИМИЯ
              • Органическая химия
              • Неорганическая химия
              • Таблица Менделеева
            • MATHS
              • Статистика
              • 9000 Pro Числа
              • Числа
              • Число чисел Тр Игонометрические функции
              • Взаимосвязи и функции
              • Последовательности и серии
              • Таблицы умножения
              • Детерминанты и матрицы
              • Прибыль и убыток
              • Полиномиальные уравнения
              • Разделение фракций
            • Microology
        • FORMULAS
          • Математические формулы
          • Алгебраные формулы
          • Тригонометрические формулы
          • Геометрические формулы
        • КАЛЬКУЛЯТОРЫ
          • Математические калькуляторы
          • 0003000
          • 000
          • 000 Калькуляторы по химии
          • 000
          • 000
          • 000 Образцы документов для класса 6
          • Образцы документов CBSE для класса 7
          • Образцы документов CBSE для класса 8
          • Образцы документов CBSE для класса 9
          • Образцы документов CBSE для класса 10
          • Образцы документов CBSE для класса 1 1
          • Образцы документов CBSE для класса 12
        • Вопросники предыдущего года CBSE
          • Вопросники предыдущего года CBSE, класс 10
          • Вопросники предыдущего года CBSE, класс 12
        • HC Verma Solutions
          • HC Verma Solutions Класс 11 Физика
          • HC Verma Solutions Класс 12 Физика
        • Решения Лакмира Сингха
          • Решения Лахмира Сингха класса 9
          • Решения Лахмира Сингха класса 10
          • Решения Лакмира Сингха класса 8
        • 9000 Класс
        9000BSE 9000 Примечания3 2 6 Примечания CBSE
      • Примечания CBSE класса 7
      • Примечания
      • Примечания CBSE класса 8
      • Примечания CBSE класса 9
      • Примечания CBSE класса 10
      • Примечания CBSE класса 11
      • Примечания 12 CBSE
    • Примечания к редакции 9000 CBSE 9000 Примечания к редакции класса 9
    • CBSE Примечания к редакции класса 10
    • CBSE Примечания к редакции класса 11
    • Примечания к редакции класса 12 CBSE
  • Дополнительные вопросы CBSE
    • Дополнительные вопросы по математике класса 8 CBSE
    • Дополнительные вопросы по науке 8 класса CBSE
    • Дополнительные вопросы по математике класса 9 CBSE
    • Дополнительные вопросы по науке
    • CBSE Вопросы
    • CBSE Class 10 Дополнительные вопросы по математике
    • CBSE Class 10 Science Extra questions
  • CBSE Class
    • Class 3
    • Class 4
    • Class 5
    • Class 6
    • Class 7
    • Class 8 Класс 9
    • Класс 10
    • Класс 11
    • Класс 12
  • Учебные решения
  • Решения NCERT
    • Решения NCERT для класса 11
      • Решения NCERT для класса 11 по физике
      • Решения NCERT для класса 11 Химия
      • Решения NCERT для биологии класса 11
      • Решение NCERT s Для класса 11 по математике
      • NCERT Solutions Class 11 Accountancy
      • NCERT Solutions Class 11 Business Studies
      • NCERT Solutions Class 11 Economics
      • NCERT Solutions Class 11 Statistics
      • NCERT Solutions Class 11 Commerce
    • NCERT Solutions for Class 12
      • Решения NCERT для физики класса 12
      • Решения NCERT для химии класса 12
      • Решения NCERT для биологии класса 12
      • Решения NCERT для математики класса 12
      • Решения NCERT, класс 12, бухгалтерия
      • Решения NCERT, класс 12, бизнес-исследования
      • NCERT Solutions Class 12 Economics
      • NCERT Solutions Class 12 Accountancy Part 1
      • NCERT Solutions Class 12 Accountancy Part 2
      • NCERT Solutions Class 12 Micro-Economics
      • NCERT Solutions Class 12 Commerce
      • NCERT Solutions Class 12 Macro-Economics
    • NCERT Solut Ионы Для класса 4
      • Решения NCERT для математики класса 4
      • Решения NCERT для класса 4 EVS
    • Решения NCERT для класса 5
      • Решения NCERT для математики класса 5
      • Решения NCERT для класса 5 EVS
    • Решения NCERT для класса 6
      • Решения NCERT для математики класса 6
      • Решения NCERT для науки класса 6
      • Решения NCERT для класса 6 по социальным наукам
      • Решения NCERT для класса 6 Английский язык
    • Решения NCERT для класса 7
      • Решения NCERT для математики класса 7
      • Решения NCERT для науки класса 7
      • Решения NCERT для социальных наук класса 7
      • Решения NCERT для класса 7 Английский язык
    • Решения NCERT для класса 8
      • Решения NCERT для математики класса 8
      • Решения NCERT для науки 8 класса
      • Решения NCERT для социальных наук 8 класса ce
      • Решения NCERT для класса 8 Английский
    • Решения NCERT для класса 9
      • Решения NCERT для класса 9 по социальным наукам
    • Решения NCERT для математики класса 9
      • Решения NCERT для математики класса 9 Глава 1
      • Решения NCERT для математики класса 9, глава 2
      • Решения NCERT
      • для математики класса 9, глава 3
      • Решения NCERT для математики класса 9, глава 4
      • Решения NCERT для математики класса 9, глава 5
      • Решения NCERT
      • для математики класса 9, глава 6
      • Решения NCERT для математики класса 9 Глава 7
      • Решения NCERT
      • для математики класса 9 Глава 8
      • Решения NCERT для математики класса 9 Глава 9
      • Решения NCERT для математики класса 9 Глава 10
      • Решения NCERT
      • для математики класса 9 Глава 11
      • Решения
      • NCERT для математики класса 9 Глава 12
      • Решения NCERT
      • для математики класса 9 Глава 13
      • NCER Решения T для математики класса 9 Глава 14
      • Решения NCERT для математики класса 9 Глава 15
    • Решения NCERT для науки класса 9
      • Решения NCERT для науки класса 9 Глава 1
      • Решения NCERT для науки класса 9 Глава 2
      • Решения NCERT для науки класса 9 Глава 3
      • Решения NCERT для науки класса 9 Глава 4
      • Решения NCERT для науки класса 9 Глава 5
      • Решения NCERT для класса 9 Scie
  • .

    5 лучших инструментов для измерения расстояния

    Когда вы новичок, все в строительстве кажется пугающим и загадочным. Даже если вы знаете теоретическую сторону строительства как свои пять пальцев, практическая сторона все равно может ошеломить вас.

    В таких сценариях всегда полезно знать базовые вещи, которые продвигают весь сложный процесс.

    И, , инструменты для измерения расстояния - это самые основные и важные компоненты конструкции.

    Ниже приведены 5 самых популярных инструментов для измерения расстояния в строительстве, а также преимущества и недостатки каждого инструмента.

    1. Линейка / Правило прямой кромки

    Обычно ее называют линейкой , инженеры и строители называют ее правилом прямой кромки.

    Он получил название прямой кромки из-за ее конструкции, у которой кромка без изгибов или наклона. Край этой измерительной линейки откалиброван с отметками для создания стандартной шкалы.

    Дятлы SERXL-24 Straight Edge Rule, 24 дюйма Woodpeckers SERXL-24 Straight Edge Rule, 24 дюйма

    Плюсы
    • Дешевые
    • Легко доступны
    • Множество вариантов с точки зрения материала, размера и маркировки
    • Служит для двойного назначения - измерения и проверки прямолинейности.
    Минусы
    • Невозможно использовать для измерения больших расстояний
    • Не очень точный.Не лучше 1,5 мм или 1/16 дюйма

    Длина

    Длина линейки с прямым краем может варьироваться от 12 дюймов / 30 см до максимум 96 дюймов / 240 см

    Когда использовать?

    Линейка прямой кромки обычно используется для проверки прямой линии, симметрии и измерения на малых расстояниях.

    Убедитесь, что ваша линейка такой же длины, как и то, что вы измеряете. Если вам придется перемещать линейку, измерения могут легко стать неточными.

    Этот измерительный инструмент классифицируется в соответствии с типом материала , использованного для его изготовления, и единицей измерения , нанесенной на кромку.

    Профессионалы предпочитают металлические линейки

    С точки зрения материалов существует три распространенных типа линейок - пластик, дерево и металл. Из этих трех металлических линейок больше всего предпочитают опытные профессионалы, потому что:

    • Они более точны, что в основном зависит от используемых методов производства.
    • Он также более прочный. Вам не нужно беспокоиться о том, что кто-то сломает его надвое.

    Empire Level 4003 Алюминиевая прямая кромка, 36 дюймов Empire Level 4003 Алюминиевая прямая кромка, 36 дюймов

    Метрические или дюймовые? Единица измерения, имеющая значение

    Другой метод классификации - это используемая единица измерения. В этой классификации есть две основные категории: одна использует метрическую систему для калибровки, а другая - дюймы.

    Плюс, это вопрос точности классификации. Ясно, что использование линейки с дюймовой калибровкой было бы непригодным, если вам нужна точность до миллиметров.

    Линейная маркировка или нулевая маркировка?

    Кроме линейок с линейной разметкой, есть линейки с нулевой разметкой посередине и цифрами с обеих сторон. Такие линейки называются центрами, находящими линейки . Это помогает найти центральную точку любого плоского объекта.

    Разместите его таким образом, чтобы измерения по обе стороны от нуля были идентичны, а центр находился в нуле.

    INCRA CENTER12 Правило центрирования 12 дюймовINCRA CENTER12 Правило центрирования 12 дюймов

    .

    Смотрите также