Как измерить шейки коленвала микрометром


Пользование микрометром при ремонте двигателя

Измерения и расчеты, выполняемые при ремонте двигателей

Цель ремонта двигателя, независимо от того, что конкретно ремонтируется, — восстановить допуски параметров двигателя до технических требований, установленных заводом-изготовителем. При любом ремонте двигателя производятся измерения. Специалист автосервиса обязан производить измерения дважды:

• Необходимо производить обмер частей ремонтируемого двигателя с целью проверки их соответствия заводским техническим требованиям и необходимости в их восстановлении.

• Прежде чем приступать к сборке ремонтируемого двигателя, необходимо производить обмер запасных частей и поверхностей, прошедших механическую обработку в процессе ремонта, с целью проверки соответствия их размеров требуемым.

МИКРОМЕТР

При техническом обслуживании и ремонте двигателя самым необходимым и чаще всего используемым измерительным инструментом является микрометр (рис. 11.1). Барабан вращается на цилиндрической ручке (стебле) микрометра на винте с микрометрической резьбой, имеющей сорок витков на дюйм. При каждом обороте барабана шпиндель микрометра перемещается на расстояние 0,025 дюйма. Барабан размечен по периметру на 25 одинаковых секторов. Таким образом, повороту измерительного барабана на одно деление соответствует перемещение шпинделя на 0,001 дюйма. Все микрометры должны регулярно проходить метрологическую поверку (рис.11.2).

Рис. 11.1. Примеры типичных микрометров, используемых для контроля геометрических размеров

Рис. 11.2. Все микрометры необходимо поверять и, при необходимости, калибровать, используя для этого эталонный стержень

Как пользоваться микрометром

Ил. 20.1. Этот большой деревянный макет служит для демонстрации того, как пользоваться микрометром. Неподвижный корпус называется стеблем

Ил. 20.2. Подвижная часть микрометра называется барабаном

Ил. 20.3. Для снятия показаний микрометра по длине стебля нанесены риски с шагом 0,025 дюйма, промаркированные числами через каждую 0,100 дюйма

Ил. 20.4. По периметру барабана равномерно расставлены 25 рисок, каждая соответствует 0,001 дюйма

Ил. 20.5. За сорок оборотов барабан перемещается на один дюйм. Таким образом, за один оборот барабан перемещается по стеблю микрометра на 0,025 дюйма (1,000 дюйм, деленный на 40, дает в результате 0,025 дюйма)

Ил. 20.6. Следовательно, для считывания показания микрометра необходимо считать показание на стебле микрометра и показание на барабане и сложить их

Ил. 20.7. За один оборот барабан смещается по ручке на одно деление, нанесенное на ней. Цена одного деления составляет 0,025 дюйма. Четыре деления составляют 0,025 х 4 = 0,100 дюйма. Напротив соответствующей риски на стебле стоит цифра "1", означающая одну тысячную дюйма

Ил. 20.8. В этом положении измерительного механизма видна одна риска на стебле микрометра, и риска на барабане, отмеченная цифрой "О" совпадает с линией шкалы, нанесенной на стебле микрометра, что означает, что барабан совершил полный оборот сверх 0,025 дюйма. Вторая риска на стебле микрометра находится под самым краем измерительного барабана. Это показание означает 0,050 дюйма

Ил. 20.9. При повороте барабана на одно деление показание микрометра увеличивается на одну тысячную дюйма и становится равным 0,051 дюйма (0,025 дюйма х 2 + 0,001 дюйма с барабана = 0,051 дюйма)

Ил. 20.10. Барабан был повернут на много оборотов пока на стебле не открылась цифра "1", означающая 0,100 дюйма (сто тысячных) плюс еще одна риска на стебле, означающая еще 0,025 дюйма (25 тысячных), плюс барабан стоит в таком положении, в котором риска на нем, отмеченная числом "10", совместилась с линией шкалы, нанесенной на стебле микрометра, что означает еще 0,010 дюйма (десять тысячных). Таким образом, это показание микрометра означает 0,135 дюйма (100+ 25+ 10= 135)

Ил. 20.11. Это показание означает 0,315 дюйма (0,300 на гтрбпо микоометра плюс 0,015 на барабане)

Ил. 20.12. Одна тысячная дюйма записывается как 0,001 дюйма, а 920 тысячных дюйма — как 0,920 дюйма

Измерение геометрических параметров коленчатого вала

Шейки шатунных и коренных подшипников коленчатого вала, как правило, отличаются по размерам. И те, и другие необходимо обмерять, проверяя на овальность и конусность (рис. 11.3).

Измерение овальности

Профиль шейки измеряется не менее чем в двух поперечных сечениях по ее длине. Измерение диаметра в каждом сечении производится через каждые 120 градусов по периметру профиля шейки, под одинаковыми углами. В примере, показанном на рис. 11.4, производится всего шесть измерений. Расчет овальности шейки производится путем вычисления разницы между наибольшим и наименьшим результатами измерений.

Поперечное сечение А:

2,0000 - 1,9995 = 0,0005 дюйма;

Поперечное сечение Б:

2,0000 - 1,9989 = 0,0011 дюйма;

Но результатам измерений максимальная величина овальности выявлена в поперечном сечении А и составляет 0,0011 дюйма. Этот результат и следует

Рис. 11.3. Измерение овальности и конусности шатунной шейки коленчатого вала с помощью микрометра

использовать для сравнения с заводскими техническими требованиями с целью определения необходимости в механической обработке детали.

Измерение конусности

Для определения конусности шейки сравниваются диаметры, измеренные в поперечных сечениях А и Б под одинаковым углом, и вычисляется разность между ними. Например:

Поперечное Поперечное сечение А сечение Б

2,0000 - 2,0000 = 0,0000

1,9999 - 1,9999 = 0,0000

1,9995 - 1,9989 = 0,0006

Максимальная разность между результатами измерений составляет 0,0006 дюйма — она характеризует конусность шейки и сравнивается с заводскими техническими требованиями.

Рис. 11.4. Измерение геометрических параметров шейки коленчатого вала. Каждую шейку необходимо измерить не менее чем в шести позициях: в поперечном сечении А и поперечном сечении Б через каждые 120 градусов по периметру профиля шейки, под одинаковыми углами

Рис. 11.5. Овальность шейки распределительного вала определяется по результатам трех измерении в одном поперечном сечении шейки — через каждые 120 градусов по периметру профиля шейки

Измерение геометрических параметров распределительного вала

Шейки распределительного(ых) вала(ов) также проверяются на овальность и конусность путем измерения с помощью микрометра и сравнения результатов с техническими требованиями завода-изготовителя (рис. 11.5).

ПРИМЕЧАНИЕ

В двигателях с верхним расположением клапанов и нижним расположением распределительного вала шейки распределительного вала делаются часто с уменьшением диаметра по направлению к заднему концу двигателя. В двигателях с верхним расположением распределительного вала шеики распределительного вала имеют обычно одинаковый диаметр.

Высота вершин кулачков распределительного вала также измеряется с помощью микрометра, как показано на рис. 11.6, и сравнивается с заводскими техническими требованиями.

Рис. 11.6. Распределительный вал проверяется на степень изношенности путем измерения с помощью микрометра высоты вершин кулачков

Задание измерить микрометром диаметр шейки коленчатого вала двигателя

Задание. ИЗМЕРИТЬ МИКРОМЕТРОМ ДИАМЕТР ШЕЙКИ КОЛЕНЧАТОГО ВАЛА ДВИГАТЕЛЯ СМД 14

Проверить нулевую установку микрометра (Рис.1). Произвести измерения шейки коленвала в 3-х поясах и в двух плоскостях (Рис.2) согласно представленной схеме.

Схема измерения шейки коленчатого вала двигателя микрометром.

ТЕХНИЧЕСКИЕ УСЛОВИЯ НА РЕМОНТ КОЛЕНЧАТЫХ ВАЛОВ ДВИГАТЕЛЕЙ.

Группы

Шатунные шейки

Коренные шейки

Производственный размер

78,00

-0,095

-0,110

88,00

-0,100

-0,115

  1. Ремонтный (Р1)
  1. Ремонтный (Р2)
  1. Ремонтный (Р3)

77,25

76,50

75,75

-0,095

-0,110

-0,095

-0,110

-0,095

-0,110

87,50

87,00

86,5

-0,95

-0,115

-0,95

-0,115

-0,95

-0,115

Коленчатый вал двигателя СМД-14

Допускаемая овальность и конусность не более 0,015 мм

Коленчатый вал двигателя ЗИЛ-130

Группы

Шатунные шейки

Коронные шейки

Производственный размер

62 – 0,025

66 – 0,03

  1. Ремонтный (Р1)
  1. Ремонтный (Р2)
  1. Ремонтный (Р3)
  1. Ремонтный (Р4)
  1. Ремонтный (Р5)

61,7 – 0,025

61,4 – 0,025

61,0 – 0,025

60,5 – 0,025

60,0 – 0,025

65,7 – 0,03

65,4 – 0,03

65,0 – 0,03

64,5 – 0,03

64,0 – 0,03

Допускаемая овальность и конусность не более 0,01 мм

Заполнить таблицу 1. Дать заключение о годности шейки коленвала сопоставив результаты измерений с техническими условиями на ремонт коленчатого вала.

Направление измерений

Плоскости измерения

Овальность, мм

Заключение о годности

А-А / параллельно плоскости колена/

Б-В /перпендикулярно плоскости колена/

Пояса измерений

1-1

86,95

86,96

0,005

перешлифовать под Р3

2-2

86,94

86,96

0,01

3-3

86,93

86,95

0,01

Конусообразность, мм

0,01

0,005

 

 

Добавить комментарий

Точность – вежливость моториста / Ремонт двигателей

Ремонт двигателей - «дело тонкое» во всех отношениях. Аккуратность, внимательность и чистота - вот только некоторые из слагаемых успеха. Но главное - это точность. Точность во всем: при ремонте деталей, при сборке, при контроле всех сопрягаемых поверхностей. Очевидно, при этом не обойтись без измерительных приборов.

Времена, когда «шлифовщик шлифует, расточник растачивает, а моторист только собирает», т.е. гайки закручивает, похоже, уходят в прошлое. Сегодня на каждом уважающем себя и клиента сервисе, занимающимся ремонтом двигателей, присутствует необходимый комплект измерительного инструмента.

Без измерительного инструмента невозможна ни одна технологическая операция. Прошлифовать коленчатый вал, расточить блок цилиндров, а также выполнить множество других работ по мехобработке деталей, чтобы привести их «в чувство», удается только с помощью точных измерений. Можно даже сказать, что измерения - основа любой моторной работы. И если без хорошего слесарного инструмента моторист, как без рук, то без измерительного инструмента он попросту - без глаз.

Естественно, чтобы измерять детали правильно и точно, нужен «правильный» инструмент, удобный и безотказный. Какой именно, попробуем разобраться, но сначала попытаемся сформулировать некие общие принципы измерения деталей.

Что будем измерять?

Ответ на этот вопрос позволяет определить, какой измерительный инструмент требуется на участке моторного ремонта. На первый взгляд кажется, что промерять рабочие поверхности деталей надо для того, чтобы сделать вывод: годятся ли эти детали для установки в двигатель или нет. Однако такие измерения, выполненные, что называется, «в лоб», могут оказаться слишком трудоемкими и вот почему.

В деталях двигателей существуют две группы размеров, контроль которых требует принципиально различных инструментов и приборов. К первой группе относятся разного рода отклонения от заданной геометрической формы и взаимного расположения рабочих поверхностей деталей. Сюда, к примеру, можно отнести такие параметры, как взаимное биение шеек валов и неплоскостность привалочных поверхностей блока и головки блока. Обычно определить такие отклонения не составляет большого труда при наличии индикаторной стойки с призмами и лекальной линейки с набором щупов.

Другие параметры из этой группы, характеризующие взаимное положение рабочих поверхностей (например, неперпендикулярность цилиндров к оси вращения коленвала или непараллельность осей шатунных и коренных шеек коленвала), измерять вообще чрезвычайно трудно - их допустимые значения должны быть обеспечены «правильной» технологией ремонта.

Вторая группа параметров - величины зазоров в сопряжениях деталей. То есть если в отверстие установлен вал, то между ним и отверстием существует зазор, по величине которого можно уверенно сказать, будет или не будет работать такое сопряжение.

В самом деле, если проанализировать все сопряжения в двигателе: поршень в цилиндре, поршневой палец в поршне и шатуне, коленчатый вал в подшипниках блока и шатунов, распределительный вал в подшипниках головки блока и многие другие, можно прийти к очевидному заключению, что абсолютное значение размера (диаметра) конкретного вала или отверстия имеет лишь второстепенное и далеко не главное значение. Главное же - это зазор между ними, его в первую очередь необходимо обеспечить при ремонте деталей и контролировать при сборке двигателя.

Пойдем дальше - большое значение имеют отклонения формы рабочих поверхностей сопряженных деталей. Их нецилиндричность (эллипсность, бочкообразность, конусность, корсетность) сразу приведет к нестабильности рабочего зазора либо по окружности, либо по длине рабочей поверхности. И снова абсолютное значение диаметра не столь важно, главное - величина зазора и отклонения от цилиндричности.

Что же получается? А вот что: измерения таких параметров при ремонте двигателя должны давать результат в большей степени относительный, а вовсе не абсолютный. Это значит, что можно с особой тщательностью, с точностью до микрона, вымерять абсолютные размеры отверстия и вала, чтобы затем найти разницу между ними, т.е. рабочий зазор в сопряжении. Можно, но совсем не обязательно. А во многих случаях и не желательно, поскольку величина зазора не будет непосредственно измерена. Гораздо лучше постараться как можно точнее определить зазор в сопряжении и лишь затем, если надо, найти абсолютные размеры деталей (последнее, кстати, потребуется лишь тогда, когда зазор окажется явно «не в допуске», для выяснения «виновника» этого отклонения).

Получаются, как говорится, «две большие разницы» - между абсолютными и относительными измерениями. Более того, разные цели измерений - абсолютный размер или относительный (зазор) - требуют разных измерительных инструментов, да и точность их может быть тоже разной.

Плюс-минус бесконечность?

«Надо взять как можно более точные приборы, промерить детали с микронной точностью - и нет никакой проблемы!» - слышим возражения некоторых специалистов. Что ж, разумно, давайте попробуем.

Вот великолепный импортный нутрометр для измерения диаметров отверстий, прибор не дешевый, но и точность его соответствующая - 2мкм. Чтобы ее добиться, нутрометр снабжен специальным установочным прибором с соответствующим калибром. Лучше прибора не бывает! А вот рычажная скоба или микрометр с индикатором - точность измерений наружного диаметра вала те же 2 мкм - настраиваются по плоскопараллельным мерам длины (плиткам Иогансона). Осталось только взять эти два прибора, и - к двигателю.

Пробуем - результат отличный! Диаметры отверстия и вала измерены с завидной точностью, вычитаем одно значение из другого и получаем величину зазора в сопряжении - прекрасно! Берем «на вооружение» эту систему? Конечно, берем, да еще с другими поспорим, у кого такой нет, что мы измерим лучше всех и точнее всех!

И вот наша великолепная измерительная система в эксплуатации - «трудится» день ото дня и на расточке от блока к блоку, и на шлифовке от коленвала к коленвалу, и на сборке. Идет время и ... однажды приезжает заказчик и говорит: «Просил сделать зазор в блоке с поршнем 0,03 мм, а получилось вдвое больше! Сам замерял». - «А чем мерил?» - «Да как обычно, нутромер с микрометром». - «Э, брат, у тебя погрешность измерений не менее 0,02 мм. Это, по сравнению с нашими инструментами, плюс-минус бесконечность! У нас все правильно, видишь?»

Мы совершенно ничего не выдумали, т.к. не раз были свидетелями подобных сцен. И каждый раз получалось, что это заказчик ошибся, это у него приборы дешевые, плохие и неточные. Иностранный же прибор - он ведь врать никак не может, зря что ли деньги за него отвалили, и не малые?!

Только одна маленькая деталь - дорогостоящий импортный измеритель не панацея, когда речь идет о моторном деле. Потому что прежде, чем делать, надо хорошо подумать. К примеру, о том, может ли «врать» самая лучшая измерительная система?

Оказывается, вполне, да еще как! Причина проста: за время работы оказались изношены калибры, по которым настраивают приборы. А это важно - ведь измеряются два абсолютных размера. Вот и пошла «гулять», постепенно нарастая, систематическая погрешность измерений. В конце концов точнейший импортный прибор стал давать никуда не годный результат - ту же «плюс-минус бесконечность», в которой еще недавно обвинялись простые и дешевые отечественные приборы, чему мы совершенно не удивляемся. Точнейшая, сложнейшая и дорогущая импортная техника, как мы уже установили ранее, только тогда дает хороший результат, когда правильно применяется. В том числе без оглядки на то, что она - точнейшая и дорогущая. Иначе точности у нее не будет, а значит, и цена ей - грош.

Когда точность точности рознь

Сравнивая или оценивая те или иные измерительные системы, необходимо представлять, с какой точностью вообще надо проводить измерения размеров моторных деталей. Микрон - это, конечно, прекрасно, а надо ли?

Представьте: мы проводим измерения диаметров цилиндра и поршня с точностью 1 мкм. А какой должен быть зазор поршня в цилиндре? Ответ: 0,04-0,06 мм. Получается, что наша «бешеная» точность здесь совершенно ни к чему - допуски на размеры деталей в десятки раз больше. То же самое относится и к подшипникам двигателя - допуски там почти такие же.

Но, может быть, точнейший прибор позволит нам точнейшим же образом (±1 мкм) выдержать минимально допустимый зазор, чтобы обеспечить максимальный ресурс двигателя? По нашему мнению, такое стремление, по меньшей мере, наивно: отремонтировать цилиндр так, чтобы все отклонения от цилиндричности были бы меньше 0,01 мм, чрезвычайно трудно на любом оборудовании (кто не верит, пусть проверит).

Кроме того, любой самый точный прибор начнет безбожно «врать», как только попадет в несоответствующие его точности температурные условия. Для прецизионных измерений, как известно, необходимо строго поддерживать температуру в помещении на уровне 20±1oС. А где это выдерживают? Может быть, там, где пользуются самыми точными микронными приборами? Тогда давайте возьмем поршень в руку и подержим секунд 20-30, пока измеряем. Почувствовали разницу микрон эдак в пять-шесть? Зачем же копья ломать, добиваясь точности в одну тысячную мм?

Вот и получается, что точность измерения должна соответствовать реальным деталям и реальным условиям. А этот уровень для любого двигателя - та же «сотка» -0,01мм (исключение составляет лишь соединение поршневого пальца с шатуном и поршнем - там точность измерений должна быть выше). Для таких измерений не требуется ничего сверхъестественного - обычные измерительные приборы.

Подобные приборы в отечественной практике применяются очень широко. Это всем известные нутромеры и микрометры - простые, доступные и надежные. Самое же важное в другом - измерительная система «нутромер-микрометр» позволяет непосредственно измерить зазор в сопряжении деталей. Вал при этом измеряется микрометром, нутромер настраивается на этот размер, и далее с его помощью измеряется диаметр отверстия относительно вала, т.е. величина зазора,- просто и ясно.

Специалисты возразят: нутромер нельзя настраивать по микрометру - только по специальному кольцу-калибру. Действительно, кольцо позволяет исключить, главным образом, погрешность от износа ножки нутромера (ее контакт с цилиндрической поверхностью кольца и с плоской поверхностью микрометра дает несколько разные результаты). Но тогда нельзя сразу измерить зазор, к тому же для микрометра потребуется свой калибр. В результате можем прийти к описанной выше ошибке, намного превышающей все возможные погрешности настройки нутромера по микрометру.

Горе от ума, или как не надо измерять

В некоторых мастерских приходилось наблюдать разного рода измерительные «изыски», не выдерживающие, по нашему мнению, никакой критики.

Есть, к примеру, такой прекрасный прибор - оптиметр. Он служит для очень точного измерения плоских деталей. Но народным умельцам это не важно - им надо поршень измерить. Микрометр или рычажная скоба им не интересны - они у всех есть, а клиента надо «напугать», чтобы уважал. Вот и стараются, измеряют бочкообразный поршень на оптиметре: поршень на столе прибора гуляет, как хочет (его наружная поверхность весьма далека от цилиндрической), стрелка индикатора скачет, как безумная. Но ничего, знай себе, меряют, только что получают в результате, сами не знают.

Или такой вариант: вместо обычного микрометра используют рычажную скобу с индикатором. Дело в принципе неплохое - рычажная скоба настраивается на нужный размер с помощью плоскопараллельных мер длины, после чего поршень можно измерить с точностью до 2 мкм. Да и шейку коленчатого вала легко «прокрутить» скобой и сразу получить эллипсность. Но если коленчатый вал - это понятно, там эллипсность должна быть не более 5 мкм, то причем здесь поршень с цилиндром? А вот если нутромер настраивать по измерительной скобе, то это уже совсем перебор - в обоих приборах есть пружинные элементы.

Видимо, действуют по известному принципу «глаза боятся, а руки делают». Только что руки делают, непонятно. Сами «мастера» этого не знают, но клиента пугают своей «точностью», без сомнения.

Мы - тоже за точность, только разумную, соответствующую допускам на детали, которые надо измерить. И за правильный выбор измерительного инструмента. Чтобы потом ничего не пришлось поправлять в измерениях - выйдет себе дороже.

Диагностика коленчатого вала двигателя

Диагностика коленчатого вала двигателя

Цель задания. Изучить устройство и способы изме­рения деталей сопряжения коленчатый вал — подшип­ники. Иметь представление о величинах изменения структурных параметров кривошипно-шатунного меха­низма в процессе эксплуата­ции автомобиля. После проведения дефектации коленчатого вала, принять решение о целесообразности ремонта коленчатого вала. Сделать выбор отремонтировать или купить коленчатый вал.

Необходимое оборудова­ние. Двигатели ГАЗ-53 (ЗИЛ-130),   бывшие в эксплуатации (требующие ре­монта), без навесного обо­рудования и со снятыми под­доном картера и масляным насосом; стенды поворотные для двигателей; инструмент для разборочно-сборочных работ: ключи гаечные 12, 14, 17 и 24 мм; ключи торцевые 12, 15, 17, 19 и 22 мм; плоскогубцы, молоток, отвертка; измерительный инструмент; щупы пластинчатые, микро­метры 50—75 мм; призмы для установки коленчатых ва­лов; динамометрическая рукоятка и рукоятка для про­ворачивания коленчатого вала; шпилька для снятия и установки вкладышей подшипников; плакаты и схемы, иллюстрирующие устройство кривошипно-шатунного ме­ханизма и приемы измерения размеров шеек коленчато­го вала, зазоров в сопряжениях шейки коленчатого ва­ла — подшипники; справочные материалы; обтирочный материал.

Последовательность выполнения диагностики коленчатого вала двигателя.

1. Устано­вить коленчатый вал на призмы, отсоединить шатуны и протереть шейки.

2. Определить величину и характер износа шатун­ных и коренных шеек по указанию преподавателя.

Шатунные и коренные шейки коленчатых валов из­меряют микрометром в двух плоскостях и двух сечениях. Одна плоскость берется по оси колена, а другая — перпендикулярно ей, как показано на рис. 2. Сечения выбирают на расстоянии 5—6 мм от галтелей. Каждое измерение выполняют два-три раза, и средний результат заносят в табл. 4.

При измерении микрометр удобнее держать левой рукой, а правой поворачивать его головку до момента действия трещотки. Мерительные поверхности пятки и шпинделя микрометра должны не туго проходить по по­верхности шейки вала, а лишь слегка «закусывать» ее.

Конусность шейки определяется как разность ее диа­метров, измеряемых в разных сечениях, но в одной пло­скости. Овальность шейки — разность диаметров, из­меренных в данном сечении, но в разных плоскостях.

Результаты измерений шеек коленчатого вала за­писать в табл. 4.

3. Определить величину зазора в сопряжении ша­тунная шейка — подшипник с помощью пластинок из фольги. Для измерения величины зазора следует пластинку вначале смазать маслом и поместить ее между шейкой вала и одной из половинок вкладыша подшип­ника, После этого крышку подшипника затягивают ди­намометрическим ключом с усилием 7—8 кгс. Удержи­вая в призмах коленчатый вал, проворачивают шатун вокруг шейки. Толщина пластинки (пластинок), при ко­торой ощущается значительное сопротивление враще­нию шатуна на шейке коленчатого вала, будет соответ­ствовать величине зазора в этом сопряжении.

Указанный зазор определяют при эксплуатации и ре­монте двигателя с помощью пластинок из фольги на собранном кривошипно-шатунном механизме, при этом крышки всех других подшипников (коренных и шатун­ных) должны быть ослаблены, а коленчатый вал про­вертывается пусковой рукояткой.

4. Дать заключение о техническом состоянии колен­чатого вала, сравнив полученные замеры с предельно допустимыми.

Если вы тщательно провели дефектацию коленчатого вала, можно сделать выбор метода выосстановления коленчатого вала в данном случае.

Методы контроля размеров шеек шлифованного коленчатого вала

Мы неоднократно говорили об инструментальных методах контроля размеров восстановленных деталей. Подобные методы были и остаются самыми правильным и точным способом контроля соответствия размеров восстановленной детали техническим требованиям. Но такая возможность есть не всегда и далеко не у всех: немногие располагают полным комплектом мерительного инструмента для проведения необходимых измерений. Можно ли обойтись без мерительного инструмента и при этом контролировать сопряжения деталей с достаточной точностью? Наш ответ - можно! Рассмотрим конкретный пример.

Во многих, да чего уж скрывать, почти во всех известных мне печатных изданиях по ремонту двигателей есть описание этого — весьма несложного — метода контроля монтажного зазора в подшипниках коленчатого вала. Он описан даже в книге «Автомобили ВАЗ» изданной еще в 1973 году. Его-то мы и покажем, по заведенной здесь традиции в фотографиях. Опишем все поэтапно — благо это просто и недолго.

Для контроля монтажных зазоров в подшипниках коленвала (шатунных или коренных — не важно) имеются пластиковые «нити», назовём их так, различной толщины. В своей работе мы используем продукцию фирмы SEALED POWER от FEDERAL MOGUL и KOLBENSCHMIDT. Под маркой SEALED POWER поставляются нити (plastic gauge) голубого, зелёного и красного цвета («если в обществе нет цветовой дифференциации штанов, у общества нет будущего» - так говорил один из героев известного фильмы), для измерения различных зазоров: голубые — для зазоров 0,102-0,229 мм, зелёные — для зазоров 0,025-0,076 мм и красные — для зазоров 0,05-0,152 мм. У KOLBENSCHMIDT красные нити используются для определения зазоров от 0,025 мм до 0,175 мм.

В нашем примере мы рассмотрим определение величины зазора в шатунном подшипнике двигателя автомобиля ВАЗ 21083, для чего воспользуемся измерителем KOLBENSCHMIDT, проходящими красной нитью через всю статью. Комплект состоит из двух компонентов: полосок со «штрихами» различной ширины (против каждого стоит обозначение размера в миллиметрах и долях дюйма) и несколькиих пластиковых нитей. Полоски многоразовые, а ниточки одноразовые. Однако, пользовать ими значительно проще, чем «мучатсься» с нутромерами и микрометрами. Принцип измерения зазора (контроля) такой: отрезаем кусочек ниточки, кладем его между валом и крышкой (в которую установлен вкладыш), затягиваем крепжные болты надлежащим моментом, затем разбираем детали. Само собой разумеется, что собираемые детали должны быть чистыми — без песка, металлической стружки и прочей грязи. Пластиковая нить-проволочка расплющивается, оставляя на валу след. К этому следу мы прикладываем измерительную полоску, на которой есть цветные прямоугольники-«штрихи» разного размера. Фактически мы замеряем «меру расплющивания» пластиковой нити.


На момент создания материала красные нити SEALED POWER были только в заказе.


Поэтому взяли со склада Plastic Gauga от Kolbernschmidt. На MotorZona.ru есть некоторое количество и других ниточек, например SPR1 STD


Измерительные полоски и "ниточки" (проволчки)


Вот отшлифованный коленчатый вал и пара вкладышей из заказа-наряд №5481. Хозяин даже не предполагает, что его коленвал стал уже звездой рунета


Собираем... И тут же разбираем.


Шаблон из комплекта прикладываем к самому широкому месту расплющенной нити


Измеренный зазор находится в пределах 0,025-0,038 мм, что входит в допустимый диапазон. По заводским требованиям (ВАЗ) монтажный зазор в шатунном подшипнике должен составлять 0,036—0,086 мм.

Когда таких нитей-измерителей в России еще не было (или их трудно было найти), для тех же целей применяли фольгу от сигаретной пачки, которая имела толщину примерно 4 сотых мм (0,04 мм). Методика измерений была точно такой же, только кусочек фольги укладыли не между валом и вкладышем, а между крышкой и тыльной стороной вкладыша. Если после этой процедуры вал не проворачивался, значит зазор меньше или равен 0,04 мм. Если проворачивался — больше. Это конечно не очень научно, но в руках мастера и фольга может быть достаточно точным инструментом. Ну а если Вы не умеете играть в шахматы, то никакая теория не поможет...

Проверка шатунных шеек и шатунных подшипников

Шатунная шейка

Рис. 2.145. Измерение овальности и конусности шатунной шейки микрометром

Проверьте шатунные шейки на наличие признаков неравномерного износа или повреждений. Измерьте овальность и конусность шатунной шейки микрометром. Если шатунная шейка имеет повреждения или ее овальность или конусность превышают предельные значения, замените коленчатый вал или прошлифуйте шатунную шейку с уменьшением ее диаметра до ближайшего ремонтного размера и используйте вкладыши уменьшенного размера.

Предельные значения по овальности и конусности 0,01 мм.

Шатунный подшипник и шатунная шейка

Шатунный болт

Рис. 2.146. Схема проверки шатунного болта

Деформация шатунного болта (болт с затяжкой в зоне пластической деформации).

Измерьте диаметр резьбы шатунного 1 болта 2 в точках «A» и «B» микрометром 3. Вычислите разность диаметров («A» – «B»). Если разность превышает предельное значение, замените шатун.

Схема измерения шатунного болта «a»: 32 мм, «b»: 40 мм.

Предельное значение разности диаметров шатунного болта («A» – «B»): 0,1 мм.

Общие сведения о шатунных подшипниках (вкладышах)

Для ремонта поставляются шатунные подшипники номинального размера и подшипники увеличенной (под шейки коленчатого вала уменьшенного диаметра) на 0,25 мм толщины, подшипники номинального размера разбиты на 5 видов, отличающихся по допуску.

Рис. 2.147. Шатунный вкладыш: 1 – красная краска

Для идентификации подшипника увеличенной толщины, используется маркировка красного цвета, которая нанесена, как показано на рисунке 2.147, толщина подшипника увеличенной толщины составляет 1,605–1,615 мм в центральной части.

Осмотр шатунного подшипника

Проверьте вкладыши подшипника на наличие признаков оплавления, точечной коррозии, прожога или расслаивания, также осмотрите отпечаток пятна контакта. Дефектные вкладыши подшипников должны быть заменены.

Зазор между вкладышами и шатунными шейками коленчатого вала

Перед проверкой зазора в подшипнике очистите подшипники и шатунные шейки.

Установить вкладыши в шатун и крышку шатуна.

Положите отрезок калиброванной пластмассовой проволоки 1 на поверхность шатунной шейки (параллельно коленчатому валу) так, чтобы он не закрывал масляный канал.

Рис. 2.148. Укладка отрезка калибровочной проволоки

Установите крышку шатуна 1 на шатун.

Рис. 2.149. Установка крышки шатуна

При установке крышки следите за тем, чтобы метка в виде стрелки 2 на крышке была обращена в сторону шкива коленчатого вала, как показано на рисунке 2.149. Смажьте моторным маслом шатунные болты, постепенно затяните глухие гайки 3 следующим образом.

а. Затяните все гайки моментом 15 Н·м.

b. Повторно доверните их на 45°

c. Повторите операцию b) еще раз.

Момент затяжки

Глухая гайка шатунного подшипника (a): затяните моментом 15 Н·м, доверните на 45° и 45°

Снимите крышку и определите величину зазора по сплющиванию калиброванной пластмассовой проволоки 2 в самом широком месте, используя шкалу 1 на упаковке калиброванной пластмассовой проволоки.

Если зазор превышает предельное значение, используйте новый подшипник номинального размера. После подбора нового подшипника снова проверьте зазор.

Зазор в шатунном подшипнике

Номинальное значение: 0,029–0,047 мм.

Предельное значение: 0,065 мм.

Если зазор не может быть приведен в норму установкой нового подшипника номинального размера, прошлифуйте шатунную шейку до ближайшего ремонтного размера и используйте подшипник увеличенной на 0,25 мм толщины.

ПРИМЕЧАНИЕ

После проверки зазора в шатунном подшипнике проверьте деформацию шатунных болтов.

Подбор шатунных подшипников

Рис. 2.151. Маркировка на шатуне и его крышке: A – № внутреннего диаметра нижней головки шатуна; B – метка указания веса

Проверьте № на шатуне и его крышке, как показано на рисунке 2.151.

ПРИМЕЧАНИЕ

Если подшипник находится в неудовлетворительном состоянии или зазор в подшипнике – отличается от нормы, подберите и установите новый подшипник номинального размера следующим образом.

При замене по любой причине коленчатого вала или шатуна с подшипником, подберите новые подшипники номинального размера по номерам, выбитым на шатуне и его крышке и/или буквам, выбитым на щеке коленчатого вала возле 3-го цилиндра.

Три № («1», «2» и «3») соответствуют следующим внутренним диаметрам нижней головки шатуна.

Например, № «1» указывает, что внутренний диаметр нижней головки шатуна составляет 45,000–45,006 мм.

Внутренний диаметр нижней головки шатуна

Затем проверьте диаметр шатунной шейки коленчатого вала. На щеке коленчатого вала №3 выбито четыре буквы, как показано на рисунке. Три буквы («A», «B» и «C») соответствуют следующим диаметрам шатунных шеек коленчатого вала. Например, буква «A» указывает, что соответствующий диаметр шатунной шейки коленчатого вала составляет 41,994–42,000 мм

Наружный диаметр шатунной шейки коленчатого вала

Рис. 2.152. Маркировка наружного диаметра шатунных шеек коленчатого вала: A – диаметр шатунной шейки коленчатого вала цилиндра №1; B – диаметр шатунной шейки коленчатого вала цилиндра №2; C – диаметр шатунной шейки коленчатого вала цилиндра №3; D – диаметр шатунной шейки коленчатого вала цилиндра №4

Рис. 2.153. Цветовая маркировка вкладышей шатунных подшипников: 1 – цветовая маркировка

Существует пять видов подшипников номинального размера, отличающиеся по толщине. Для различия они имеют идентификационные метки следующих цветов в местах, показанных на рисунке 2.153.

Каждый цвет соответствует определенной толщине центральной части подшипника.

Толщины шатунных подшипников номинального размера

Таблица подбора шатунных подшипников номинального размера

Рис. 2.150. Измерение сплющенного отрезка калибровочной проволоки

Используя шкалу 1 на упаковке с калиброванной пластмассовой проволокой 2, проверьте зазор в подшипнике для подобранного подшипника номинального размера (рис. 2.150). Если величина зазора все еще превышает предельное значение, установите подшипник увеличенной толщины и снова проверьте зазор.

Easy Guide [2018]

Чтение, использование и измерение микрометра

Когда пара штангенциркулей просто недостаточно точна (т.е. необходимо измерить допуск менее 0,002 дюйма), большинство машинистов обратятся к показаниям микрометра. Микрометры бывают цифровых, циферблатных и нониусных, как штангенциркуль:

Цифровой микрометр Mitutoyo…

Циферблатный микрометр Mitutoyo, точнее, индикаторный микрометр

Микрометр Mitutoyo Vernier

Какой для меня?

Отложим в сторону циферблат или индикаторный микрометрический стиль.Они очень дорогие, и вы можете даже не увидеть их за пределами хорошо оборудованной метрологической лаборатории. Их цель - уменьшить ошибку оператора даже больше, чем это сделает наперсток с храповым механизмом. Поворачивайте, пока шкала не станет равной нулю для максимальной повторяемости. У них также есть кнопка быстрого отсоединения, чтобы минимизировать износ контактов. Если вам действительно нужны высокоточные и повторяемые измерения, а их нужно много, купите индикаторный микрометр. Но, как я уже сказал, они дорогие!

Остается только цифровой или нониус.Если вы можете читать нониус быстро, легко и точно (это требует небольшой практики), они будут намного дешевле, долговечнее, а батарея никогда не разрядится, потому что им не нужна батарея.

С другой стороны, если вы никогда не изучали нониусные микрометры и не привыкли к ним, вы можете мгновенно получить показания микрометра с цифрового прибора. Я предпочитаю использовать цифровые микрофоны для тех размеров, которые я использую чаще всего, и я купил комплект нониусных микрофонов для больших размеров, которые я почти никогда не использую.

Наборы микрометров и диапазоны размеров

Микрометры работают с использованием прецизионного винта, который перемещает наковальни вместе или врозь. Таким образом, у них есть довольно ограниченный диапазон измерений, которые они могут выполнять. Обычно наборы микрометров поставляются в штучной упаковке, так что вы можете снимать показания микрометров для широкого диапазона размеров.

Набор микрометров Mitutoyo Vernier, размеры 0-12 ″

На фото представлен набор микрометров Mitutoyo Vernier с комбинированным диапазоном от 0 до 12 дюймов.Такой набор довольно дорогой - 2141,70 долларов на Amazon, когда я пишу это.

С другой стороны, более мелкая марка, такая как Fowler, предлагает набор микрометров Вернье от 0 до 6 дюймов всего за 311,46 доллара. Если немного больше, вы даже можете получить набор цифровых микрометров 0–6 дюймов. Доступно на Amazon в iGaging по цене 395 долларов США.

Считывание нониусного микрометра

Лучший способ научиться считывать показания микрометра Вернье - это наблюдать, как кто-то его объясняет. Вот отличное видео от Mitutoyo о считывании микрометров для нониусных микрофонов:

Дополнительный балл: Хотели бы вы попрактиковаться в считывании микрометров с помощью нониусного микрофона? Попробуйте эту отличную симуляцию:

Виртуальный микрометр - симулятор тысячных долей дюйма

Точность микрометра

микрометров обычно считаются с точностью до десятой или нулевой.0001 ″. Это примерно так же точно, как и любой специалист с ЧПУ, за исключением очень специализированных проектов. Однако следует иметь в виду:

Точность ниже 0,001 ″ сильно зависит от температуры. Не носите микрометр в кармане - тепло вашего тела согреет его и изменит показания микрометра. Помните о температуре в вашем магазине, где вы снимаете мерки. Подумайте об использовании подставки для микрометра (см. Ниже), которая также помогает удерживать тепло вашего тела от воздействия на показания микрометра.

Ознакомьтесь с калькулятором теплового расширения G-Wizard (упомянутым выше), чтобы понять, насколько важна температура. Кстати, просто подпишитесь на бесплатную пробную версию, и вы сможете сохранить и использовать многие калькуляторы, в том числе Калькулятор теплового расширения, на всю жизнь.

Стойка для микрометра

Стойка для микрометра может обеспечить более точное измерение. Он позволяет избежать передачи тепла вашим телом на микрометр и упрощает выполнение измерений без жонглирования.

Как пользоваться микрометром (трещотки для победы!)

Выше мы видели, как читать микрометр Вернье. Помимо этого навыка, в использовании микрометра есть два ключевых момента: удерживать объект, который вы измеряете, параллельно наковальням и прикладывать равномерное усилие к микрометру во время измерения.

Так же, как штангенциркуль, вы можете форсировать измерение, приложив слишком большой крутящий момент к микрометру. Один из способов обеспечить стабильные измерения - это купить храповик.Это небольшой встроенный динамометрический ключ. Поверните маленькую рукоятку с храповым механизмом, которая выступает из основной рукоятки, до тех пор, пока она не щелкнет несколько раз, и вы будете проводить измерения с одинаковым крутящим моментом каждый раз.

Стандарты микрометров и калибровка микрометров

Учитывая уровень точности, обеспечиваемый большинством микрометров, им необходима калибровка для обеспечения их точности. Точная калибровка настолько важна, что существует действительный стандарт, описывающий, как ее следует выполнять.

Вот как обычно откалибровать микрометр:

  1. Убедитесь, что все работает нормально, без привязки или других проблем.
  2. Очистите наковальни микрофона
  3. Закройте его, обнулите и убедитесь, что он надежно возвращается к нулю.
  4. Теперь проверьте микрометр в различных контрольных точках с помощью измерительных блоков или других эталонов, которые известны своей высокой точностью.
  5. Для каждой контрольной точки очистите измерительные блоки, чтобы между блоком и микрофоном не было мусора или пыли.
  6. Снимите несколько показаний для каждой контрольной точки. Убедитесь, что микрометр повторяется в пределах допуска (например,грамм. 0,00005 ″). Запишите измерения на контрольном листе, который дает длину, допуск, измеренную длину и погрешность.
  7. Вам также следует проверить плоскостность и параллельность опор. Используйте небольшую сферу или стилус цифрового щупа. Установите ноль со сферой в центре поверхностей наковальни и ноль. Переместите шар вокруг измерительных граней и посмотрите, как изменится обнуленное измерение. Он должен оставаться в пределах допуска микрометра.

Микрометры большего размера поставляются со стандартами микрометров.Это прецизионные стержни, которые отлично подходят для обнуления в цехе. Их не рекомендуется использовать для калибровки, поскольку они недостаточно точны.

Картинки стоят тысячи слов, поэтому вот отличное видео от Mitutoyo о калибровке микрометров:

Большинство микрометров включают в себя небольшой гаечный ключ, который можно использовать для установки нуля устройства, если оно не показывает нулевое значение при полностью закрытом состоянии (возможно, в стандарте для больших микрофонов)

История микрометра

Интересно, что первые устройства, похожие на микрометры, восходят к 17 веку, когда Уильям Гаскойн использовал их для измерения расстояний между звездами, а также для определения относительных размеров различных небесных тел.Лишь в начале XIX века Генри Модслей создал первый настольный микрометр, который служил окончательным судьей в измерениях и точности.

К 1844 году были опубликованы сведения о микрометре мастерской Уайтворта, который очень похож на современные микрометры. У него была чугунная рама и противостоящие стальные цилиндры. Один приводился в движение прецизионным винтом и циферблатом, позволяющим производить измерения с точностью до десятых тысячных дюйма. К 1867 году компания Brown & Sharpe начала их массовое производство, что позволило среднему механическому цеху значительно повысить точность своих измерений.

Специальные типы микрометров

Внешний микрометр

Наиболее распространенные микрометры, которые мы обсуждали выше, - это внешние микрометры. Они измеряют внешние размеры.

Головка микрометра

Вы можете встретить микрометрическую головку, которая является частью другого инструмента или не прикреплена к раме. Это обычное дело. Они полезны в качестве точных регулировок и упоров, а также в качестве компонентов более сложного оборудования.

Внутренний микрометр

Точно так же, как штангенциркуль можно использовать для измерения внутренних размеров, вы можете приобрести микрометры, настроенные для этого.Они называются микрометрами внутри:

Mitutoyo 0,2-1,2 ″ внутренний микрометр, штангенциркуль. Примерно 216,95 долларов на Amazon.

Два выступающих кончика круглые.

Тот, что на фото, - это «Caliper-Style». Вы также можете приобрести трубчатые микрометры и .

Трубчатые внутренние микрометры

встречаются реже, но удобны для больших отверстий.

Лопастной микрометр

Лезвие-микрометры

могут использоваться для измерения внешних размеров канавок.

Микрометр с канавкой

Вот чудак, но там, где есть допуск, будет соответствующий измерительный прибор. В канавочном микрометре используются концентрические стержни, к которым прикреплены диски. Поместите по одному диску в каждую канавку или, возможно, по одному в канавку и по одному на внешней кромке или поверхности, и вы сможете с большой точностью измерить расстояние между ними.

Глубиномер микрометр

В разделе, посвященном штангенциркулям, мы видели, как у них есть измеритель глубины.Неудивительно, что, когда возникает потребность в более точных показаниях глубины, на помощь приходит микрометр: представляем микрометрический глубиномер.

Микрометр для измерения внутреннего диаметра (микрометр для измерения внутреннего диаметра)

Отверстия сами по себе являются такой наукой, я подожду до секции измерения диаметра, чтобы поговорить о микрометрах внутреннего диаметра.

Микрометр для винтовой резьбы: см. Инструменты для метрологии / измерения резьбы

.

Измерение прогиба коленчатого вала двигателя

Понимание измерения прогиба коленчатого вала двигателя поможет инженеру-диагносту

В какой-то момент в своей карьере инженеру-диагносту, возможно, придется проверить работу двигателя с воспламенением от сжатия. Многие из дефектов, возникающих на таких узлах, связаны с износом коренных подшипников, из-за чего коленчатый вал меняет свою продольную прямолинейность. Обычно первая диагностическая проверка такого двигателя заключается в проведении серии измерений между шатунами коленчатого вала в различных точках по кругу вращения, что в некотором роде называется правильным прогибом коленчатого вала.Если приводной двигатель является двигателем с воспламенением от сжатия и имеет диаметр цилиндра более 250 мм (10 дюймов), также необходимо учитывать центровку его коленчатого вала. Ниже этого размера общая жесткость и малые размеры агрегата, а также тот факт, что коленчатый вал является цельной поковкой, делают измерение прогибов коленчатого вала чрезвычайно трудным и ненужным.

Коленчатый вал большого двигателя с воспламенением от сжатия представляет собой огромные громоздкие компоненты, обычно состоящие из нескольких отдельных поковок, соединенных с натягом, которые должны оставаться как можно более прямыми во время работы, иначе это может привести к серьезному повреждению подшипников и, как следствие, двигатель.Коленчатый вал состоит из шатунов кривошипа, шейки кривошипа и шейки по всей длине, и его вес поддерживается коренными подшипниками на шейках. В течение определенного периода времени, пока двигатель продолжает работать, износ подшипников может быть неравномерным по всей длине коленчатого вала. Это означает, что коленчатый вал не будет оставаться на первоначальной прямой линии, а будет слегка изгибаться вверх или вниз, что может быть не видно невооруженным глазом, но может вызвать опасный уровень усталости шатунов коленчатого вала.Например, поломка или чрезмерный изгиб коленчатого вала двигателя с воспламенением от сжатия может быть результатом чрезмерных зазоров в подшипниках. Чрезмерное зазор в одном основного подшипника может разместить практически всю нагрузку на другой основной опоре и может быть вызвано теми же факторами, что причиной отказа радиального подшипника. Изгиб коленчатого вала под нагрузкой может привести к усталости и, в конечном итоге, к поломке шейки кривошипа.

Инженер-диагност должен также знать, что смещенные относительно центра и овальные шейки имеют тенденцию соскабливать материал подшипника, что приводит к чрезмерному износу и увеличению зазора между валом и подшипником.Чрезмерный износ подшипника обычно проявляется в той или иной форме фреттинг-коррозии поверхности подшипника или в виде задиров на шейках вала. Возможность овальности шейки можно свести к минимуму, приняв меры для предотвращения неправильной смазки, выхода из строя подшипников скольжения, превышения скорости или перегрузки двигателя, чрезмерного прогиба коленчатого вала и несоосности деталей. Поломка коленчатого вала при изгибе также может быть результатом чрезмерного прогиба коленчатого вала и, как правило, вызвана неправильной центровкой между ведомым узлом и двигателем и может привести к поломке или изгибу вала, а также к значительным другим повреждениям подшипников, шатунов и других деталей.Превышение частоты вращения двигателя также может вызвать чрезмерный прогиб коленчатого вала.

Следовательно, существует необходимость в хорошем техническом обслуживании по измерению прогибов коленчатого вала через регулярные промежутки времени, чтобы гарантировать, что выравнивание вала остается в допустимых пределах, и эти прогибы можно измерить, как описано в следующих разделах. Показания прогиба коленчатого вала являются отличным методом определения двигателя для центровки привода и износа коренных подшипников. Их следует принимать в соответствии с любой системой планового технического обслуживания при проведении осмотра двигателя.Например, в морской установке измерение обычно выполняется при подозрении на проблему, например, в результате случайного приземления на мель или столкновения, или после длительного периода сухого дока. На двигателях меньшего размера, например, с внутренним диаметром менее 250 мм (10 дюймов), нецелесообразно проводить измерения прогиба коленчатого вала. Для двигателей больше такого размера это всегда рекомендуется и должно выполняться регулярно. Измерения следует регистрировать и анализировать, а также результаты анализа.Величину прогиба коленчатого вала можно определить с помощью прямолинейного калибра, который легко применять. Прямой датчик - это просто шкала, показывающая внутри микрометра, используемая для измерения отклонения расстояния между соседними шатунами коленчатого вала, когда вал двигателя вращается, блокируя двигатель.

Рисунок 1 дает представление о том, какие измерения выполняются для определения прогибов коленчатого вала.

На эскизе указан крайний цилиндр (No.1) с нетерпением жду. Сплошной линией показано положение верхней мертвой точки (ВМТ) (3), а пунктирными линиями - положения 3 и 9 часов (соответственно 4 и 2), а также положение по обе стороны от нижней мертвой точки (НМТ) ( 1 и 5). Различные виды перемычек опущены для ясности. Последние два показания снимаются, когда шатун повернут как можно ближе к манометру. Как видно из рисунка, между перемычками кривошипа вставляется индикатор с круговой шкалой, чтобы определить расстояние между ними.

Если отклонение измеряется через определенный промежуток времени, важно и необходимо, чтобы его измеряли в одной и той же точке, в противном случае показание не даст реального отражения о степени отклонения. Концы индикатора должны входить в метки перфорации на шатунах. Если этих отметок нет, их необходимо сделать так, чтобы индикатор мог быть установлен в правильное положение. Обычно для нанесения разметки используется кернер, чтобы каждый раз отклонение производилось в одной и той же точке.В идеале отклонение должно быть измерено в четырех точках кривошипа, а именно в верхней, нижней и двух сторонах. На практике, однако, нижние показания не снимаются из-за вероятности засорения шатуна, а вместо этого показания снимаются с обеих сторон от нижнего положения, таким образом, всего пять показаний снимаются с каждой перемычки кривошипа в указанных положениях. После определения прогибов коленчатого вала практическую работу можно считать завершенной, но, безусловно, требуется теоретический анализ и интерпретация этих результатов, чтобы иметь возможность принимать какие-либо значимые решения относительно регулировки регулировочных шайб основных подшипников на основе поднятых и записанных данных.

Фактический метод измерения прост. При правостороннем вращении двигатель перекрывается так, что блок номер 1 проходит сразу за нижней мертвой точкой (НМТ) в порт, а микрометр вставляется на осевой линии вала и устанавливается на ноль. Затем двигатель закрывают под углом более 90 ° к нормальному направлению вращения и снимают показания микрометра. Затем процесс повторяется с штифтом в верхней мертвой точке (ВМТ) и снова с шатунным штифтом под углом 270 °. Наконец, двигатель закрывается настолько близко к нижней мертвой точке, насколько позволяет микрометр, и снимаются окончательные показания.Окончательное значение также должно быть нулевым. Затем микрометр перемещается к следующему кривошипу, и процесс повторяется. Повторение следует выполнять на каждой единице, пока все не будут измерены. Затем показания заносятся в таблицу и анализируются. Типичный набор показаний (1/100 мм) для шестицилиндрового судового двигателя с воспламенением от сжатия диаметром 300 мм показан в таблице ниже. Немного подумав, покажем, что при повороте рукоятки манометр также поворачивается, что затрудняет чтение в ограниченном пространстве внутри картера.Зеркало и фонарик окажутся неоценимыми полезными в таких обстоятельствах, и инженер-диагност не должен забывать о правиле пяти P.

Правильная подготовка предотвращает нежелательную работу

Помимо использования одной и той же точки на шейке кривошипа для измерения отклонения, существуют и другие факторы, которые необходимо учитывать, если это морская установка, и они включают нагрузку на судно, дифферент, боров, провисание и т. д. Судно должно быть на плаву во время снятия показаний, и инженер-диагност должен внимательно прочитать осадки носом, кормой и, если возможно, миделем (с обеих сторон) и записать их в свой отчет.Строго говоря, судно должно быть порожним, если оно является грузовым. В некоторой степени эти точки немного похожи на позолоту лилии с сосудом длиной менее 60 м (200 футов), но, если он профессионал, инженер-диагност должен записать эти точки и записать их. В отчете также должны быть указаны производитель и тип двигателя, его тормозная мощность и обороты, диаметр цилиндра, ход и расстояние между цилиндрами. Он также должен включать, разумеется, название судна, причину выполнения работ, а также место и дату измерения.Такие комментарии могут показаться очевидными, но, тем не менее, о них часто забывают. Главный инженер также должен отметить таблицу прогибов и то, что они были зафиксированы - когда, где и почему - в своем бортовом журнале машинного отделения.

Результаты сведены в таблицу, как показано в примере таблицы. Цифры в первой строке представляют номер устройства или цилиндра, а первый столбец показывает положение, в котором были сняты эти показания. Последняя строка показывает разницу между верхним и нижним показаниями, которая дает вертикальное смещение коленчатого вала.Значения вертикального смещения необходимо сравнить с максимально допустимыми пределами, указанными производителем двигателя.

Также следует записать метод нумерации цилиндров, т. Е. Спереди или сзади. Единица номер 1 обычно, но не обязательно, находится рядом с маховиком. Анализ вертикальных прогибов (т. Е. Разницы между отклонениями в ВМТ и НМТ), приведенный в таблице выше, показан на Рисунке 2 ниже. Большинство людей считают, что графическое представление данных более привлекательно и легко для понимания, чем список чисел, поэтому приведенные выше данные лучше всего изобразить в виде кривой отклонения.Проведена прямая линия, представляющая длину коленчатого вала, и центральные линии от каждого блока проведены через эту линию. Теперь это действует как основная инфраструктура, с которой можно начать построение кривой прогиба. Так как первое отклонение +1,0 (помните, что они, как правило, 100 мм /, если не указано иное), что расстояние нанесены на шкале вниз от опорной линии на центральной линии узла 2 (не блок 1) и линией, проведенной аб. То есть под углом, пропорциональным отклонению в точке a, и продолжается до пересечения с центральной линией следующего блока.Следующим шагом является измерение отклонения от точки пересечения (вверх для отрицательного значения и вниз для положительного значения) и соединение точки из предыдущей точки, которая дает начало линии bc. Этот же шаг следует повторять до тех пор, пока не будет покрыт последний блок. Линия, проходящая через точки, должна быть хорошей кривой, но редко.

Между этими точками проводится гладкая кривая, и положение этой кривой относительно базовой линии XY дает представление о состоянии различных подшипников.Например, в этом конкретном примере легко понять, что подшипники узлов 3, 4 и 5 расположены слишком далеко от допустимой линии сглаживания и, следовательно, требуют внимания. Опытный инженер-диагност, возможно, к настоящему времени понял, почему только сравнение значений вертикального смещения со спецификациями производителя недостаточно. Это так, потому что, даже если значения находятся в установленных пределах, относительного износа может быть достаточно, чтобы вызвать чрезмерное смещение. Следовательно, рекомендованный метод дает дополнительную уверенность в соосности коленчатого вала.После корректировки соосности с помощью прокладок инженер-диагност должен снять еще один набор показаний прогиба, чтобы убедиться, что регулировка кривой контактной сети удовлетворительна. Тот же метод анализа можно использовать для поперечных прогибов, но обычно это делается только при подозрении на серьезное поперечное смещение вала.

При осмотре двигателя необходимо учесть следующие моменты.

1. Шатуны также следует визировать с помощью линейки для проверки прямолинейности.

2. Проверьте опорные поверхности на наличие светлых участков, которые обычно указывают на чрезмерный износ.

3. Необходимо проверить состояние и износ как больших, так и малых концевых подшипников, и в случае чрезмерного износа вкладышей подшипников следует заменить. Диаметр шатунов кривошипа следует откалибровать, измерив его микрометром и снова записав результаты в поисках овальности.

4. Необходимо проверить состояние коленчатого вала, уделяя особое внимание износу шейки коренных подшипников, и при обнаружении чрезмерного износа вкладыши подшипников следует заменить.Диаметр коренной шейки коленчатого вала должен быть откалиброван путем измерения с помощью микрометра, сняв два показания под прямым углом друг к другу, и, опять же, измерения должны быть записаны и искать любую овальность шейки, а также шейки коленчатого вала.

5. Все детали двигателя должны быть тщательно очищены, все масляные каналы должны быть чистыми и чистыми, а детали должны быть вытерты насухо мягкой тканью.

Многие коренные и шатунные подшипники не подлежат эффективному ремонту, поэтому при появлении на них сильных задиров или признаков сильного износа их необходимо заменить.Инженер-диагност найдет допустимые уровни износа для данного двигателя в справочнике производителя. Для измерения износа шейки коленчатого вала или шатунной шейки необходим микрометр подходящего размера, а для измерения внутренней поверхности вкладыша подшипника необходим микрометр с шариковым концом. Подшипники с разъемными кожухами можно измерить на предмет износа, прикрутив блок к соответствующей части коленчатого вала поверх пластилина соответствующей марки, после чего измерить его толщину и сверять с таблицей, поставляемой с материалом.

Овальность проверяется путем измерения пары микрометрических диаметров шейки или штифта в центре подшипника и на каждом конце под прямым углом друг к другу. В справочнике производителя указывается допустимая овальность или износ. Если есть серьезные задиры на коленчатом валу и подшипниках как на коренных, так и на шатунных подшипниках, это следует рассматривать как явный индикатор необходимости замены подшипников и тщательной промывки и очистки всей системы смазки.Ремонт коленчатого вала может рассматриваться только в том случае, если имеется не более двух царапин, которые не являются частью общего износа. Ремонт часто выполняется путем переточки коленчатого вала меньшего размера - существуют строгие ограничения на количество переточки, которое может быть затронуто, - и последующей подгонкой вкладышей подшипников меньшего размера. Частицы характеризуются своей формой, количеством и размером, что позволяет инженеру-диагносту определить, насколько далеко продвинулся подшипник в стадии износа и поломки.Различные стадии деградации износа показаны на Рисунке 4 ниже, где поверхности увеличены для ясности. Износ как явление вызывает изменяющееся образование обломков в течение периода его работы на взаимодействующих поверхностях, меняющееся от мелких частиц во время периода приработки до поверхности, напоминающей поверхность плохо вспаханного поля на последней стадии износа.

По завершении всех этих проверок и испытаний двигатель следует перестроить с использованием новых прокладок и аналогичных расходных материалов, залить чистым смазочным маслом и медленно перевернуть рукой несколько раз, чтобы убедиться, что смазочное масло достигло всех частей двигателя. двигатель перед розжигом.После работы двигателя, скажем, в течение часа для установки подшипников во фланце коробки передач необходимо сломать, удалить болты и измерить зазор с помощью щупа сверху, снизу и с каждой стороны, снова повернув вал с интервалами 90 ° и принимая

.

Как работает коленвал - Все подробности

При сгорании топлива поршень выстреливает прямо вниз по цилиндру, работа коленчатого вала заключается в преобразовании этого поступательного движения во вращение - в основном путем поворота и подталкивания поршня вверх по цилиндру.

Терминология коленчатого вала достаточно специализированная, поэтому мы начнем с названия нескольких частей. А журнал это часть вала, которая вращается внутри подшипника. Как видно выше, шейки коленчатого вала бывают двух типов: коренные шейки образуют ось вращения коленчатого вала, а шатунные шейки закреплены на концах шатунов, доходящих до поршней.

Для дополнительной путаницы шейки шатунов сокращенно обозначаются как шейки шатунов и также обычно называются шатуны , или цапфы головные . Цапфы стержней соединены с главными шейками посредством полотна .

Расстояние между центром коренной шейки и центром пальца коленчатого вала называется радиус шатуна , также называемый ход кривошипа . Это измерение определяет диапазон хода поршня при вращении коленчатого вала - это расстояние сверху вниз известно как ход .Ход поршня будет в два раза больше радиуса кривошипа.

Задний конец коленчатого вала выходит за пределы картера и заканчивается фланец маховика . Этот прецизионно обработанный фланец прикреплен болтами к маховик , большая масса которого помогает сгладить пульсацию поршней, срабатывающих в разное время. Через маховик вращение передается через трансмиссию и главную передачу на колеса. В АКПП коленчатый вал прикручен к кольцевая шестерня , несущий гидротрансформатор, передавая привод на автоматическую коробку передач.По сути, это мощность двигателя, а мощность передается туда, где она необходима: гребные винты для лодок и самолетов, индукционные катушки для генераторов и опорные колеса транспортного средства.

Передний конец коленчатого вала, иногда называемый носиком, представляет собой вал, выходящий за пределы картера. Этот вал будет заблокирован с зубчатым колесом, которое приводит в движение клапанный механизм через зубчатый ремень или цепь [или, в высокотехнологичных приложениях, зубчатые передачи], и шкив, который передает мощность через приводной ремень на такие аксессуары, как генератор переменного тока и водяной насос. .

Детали коленчатого вала

Основные журналы

коренные шейки или просто главные шейки зажаты в блоке двигателя, и двигатель вращается вокруг этих шейек. Все шейки коленчатого вала будут обработаны идеально гладкими и круглыми и часто закалены. Основные шейки закреплены в седлах, в которых установлена ​​сменная вкладыш подшипника буду сидеть. Подшипник мягче, чем шейка, и может быть заменен по мере износа и предназначен для поглощения небольшого количества загрязнений, если таковые имеются, чтобы не повредить коленчатый вал.А крышка коренного подшипника затем прикручивается к шейке болтами и затягивается с точным крутящим моментом.

[Схема главной цапфы с подшипниками и отверстиями]

Цепи движутся по масляной пленке, которая вдавливается в пространство между шейкой и подшипником через отверстие в седле коленчатого вала и соответствующее отверстие во вкладыше подшипника. При правильном давлении масла и подаче масла шейка и подшипник не должны соприкасаться.

Шатунные шейки

шатунные шейки смещены от оси вращения и прикреплены к большие концы шатунов поршней.Как ни странно, их также часто называют шатуны или Шатунные опоры . Подача масла под давлением идет через наклонный масляный канал, просверленный от основной шейки.

В некоторых шатунах просверлено отверстие для масла, позволяющее распылять масло на стенку цилиндра. В этом случае опорные подшипники шатуна будут иметь канавку для подачи масла в шатун.

Смазка коленчатого вала

Контакт металл-металл - враг эффективного двигателя, поэтому и главные шейки, и шейки стержней движутся по масляной пленке, которая находится на поверхности подшипника.

Подать масло к коренному подшипнику скольжения легко: масляные каналы от блока цилиндров ведут к каждому седлу коленчатого вала, а соответствующее отверстие в корпусе подшипника позволяет маслу достигать шейки.

Подшипники шейки шатуна требуют такой же смазки, но они вращаются вокруг коленчатого вала со смещением. Для подачи масла к этим подшипникам масляные каналы проходят внутри коленчатого вала - через главную шейку, по диагонали через перемычку и через отверстия в шейках шатунов.Канавка в подшипнике коренной тяги позволяет маслу непрерывно продавливать масло по каналу к шейкам шатуна, чему способствует выброс наружу центробежной силой вращающегося коленчатого вала.

Зазоры между шейками и подшипниками являются основным источником давления масла в двигателе. Если зазоры слишком велики, масло вытекает свободно, а давление не поддерживается. Слишком малые зазоры вызовут высокое давление масла и риск контакта металла с металлом. Поэтому важно, чтобы зазор между подшипниками и шейками измерялся при ремонте двигателя.

Противовесы

Коленчатый вал подвержен сильным вращающим силам, а масса шатуна и поршня, движущиеся вверх и вниз, оказывает значительную силу. Противовесы отлиты как часть коленчатого вала, чтобы уравновесить эти силы. Эти противовесы обеспечивают более плавную работу двигателя и более высокие обороты.

Коленчатый вал балансируется на заводе. В этом процессе прикрепляется маховик, и весь узел вращается на машине, которая измеряет, где он находится вне баланса. Балансировочные отверстия просверлены в противовесах для уменьшения веса. Если необходимо добавить вес, просверливается отверстие, которое затем заполняется хэви-металлом или меллори. Это повторяется до тех пор, пока коленчатый вал не будет сбалансирован.

Упорные шайбы коленчатого вала

В какой-то момент по его длине будут установлены две или более упорных шайб, чтобы предотвратить продольное перемещение коленчатого вала. На изображенном коленчатом валу с обеих сторон центральной шейки имеются упорные шайбы.Эти упорные шайбы устанавливаются между обработанными поверхностями перемычки и седла коленчатого вала, сохраняя заданный небольшой зазор и сводя к минимуму величину бокового перемещения, доступного для коленчатого вала. Расстояние, на которое коленчатый вал может перемещаться из конца в конец, называется его осевым люфтом, и допустимый диапазон будет указан в руководствах по обслуживанию.

В некоторых двигателях эти упорные шайбы являются частью коренных подшипников, в других, как правило, более старых типов, используются отдельные шайбы.

Основные сальники

Оба конца коленчатого вала выходят за пределы картера, поэтому необходимо предусмотреть какой-либо метод предотвращения утечки масла через эти отверстия.Это работа двух основных масляных уплотнений, одного спереди и одного сзади.

задний главный сальник устанавливается между задней главной шейкой и маховиком. Обычно это манжетное уплотнение из синтетического каучука. Прокладка вдавливается в углубление между блоком цилиндров и масляным поддоном. Уплотнение имеет фасонную кромку, которая плотно прижимается к коленчатому валу пружиной, называемой подвязкой.

Неисправное масляное уплотнение является серьезной проблемой, поскольку оно находится рядом с главными шейками, которые получают и нуждаются в хорошей подаче масла под давлением.В сочетании с вращением коленчатого вала это приводит к быстрой потере моторного масла из-за любого нарушения сальника.

сальник передний похож на задний, хотя его выход из строя менее катастрофичен, и к нему легче получить доступ. Передний сальник будет за шкивами и шестерней привода ГРМ.

Сальник сам по себе является дешевой деталью, но для его доступа требуется много труда по снятию трансмиссии, сцепления, маховика и, возможно, коленчатого вала.Поэтому рекомендуется заменять сальники каждый раз, когда двигатель разбирается и детали доступны.

Схемы коленчатого вала

Базовый коленчатый вал, показанный выше, от рядного 4-цилиндрового двигателя. Другие конструкции коленчатого вала будут зависеть от компоновки двигателя. Более подробно эта тема освещена в статье о компоновке двигателя. Но следует отметить, что в двигателях V-образной формы и W два шатуна могут иметь общую шейку штока.Ниже показаны некоторые типовые схемы коленчатого вала.

Коленчатый вал V6

Коленчатый вал V6 является в некотором роде специализированным, потому что он требует, чтобы шейки шатуна были разделены для поддержания равномерного интервала зажигания. Это требует, чтобы цапфы стержней были расколоты или раздвинуты, что известно как шплинт или Журнал разъемный дизайн.

Неисправности

Коленчатый вал, будучи очень прочным, является надежным элементом, и отказы коленчатого вала случаются редко, если только двигатель не работает в экстремальных условиях.

Изношенные журналы

Без достаточного давления масла шейки коленчатого вала будут контактировать с опорными поверхностями, постепенно увеличивая зазор и ухудшая давление масла. В крайнем случае это может привести к разрушению подшипников и серьезному повреждению двигателя. Если журналы изношены до предела, предусмотренного для их использования, или уже не имеют идеально круглой формы, их необходимо отшлифовать, как описано ниже.

Усталость

Постоянные силы, действующие на коленчатый вал, могут привести к усталостным трещинам, обычно обнаруживаемым на галтеле, где шейки соединяются со стенкой.Гладкий радиус этого галтеля имеет решающее значение для предотвращения слабых мест, ведущих к усталостным трещинам. Коленчатый вал можно проверить на наличие трещин с помощью магнитофлюкс .

Модификации и обновления

Шлифовка коленчатого вала

Журналы изнашиваются со временем. У них может образоваться шероховатая поверхность, они могут стать некруглыми или заостренными. В этих случаях их поверхность можно восстановить с помощью шлифовки коленчатого вала. Когда коленчатый вал заточен, его шейки будут уменьшаться в диаметре и, следовательно, увеличиваться в размерах, поэтому потребуется установка более толстых подшипников.

Коленчатые валы Stroker

Объем цилиндра можно увеличить, перемещая поршни на более длинный ход. Ход двигателя определяется радиусом кривошипа, который представляет собой расстояние между шейками шатуна и коренными шейками. Коленчатый вал с большим радиусом коленчатого вала будет производить более длинный ход и больший объем цилиндра - это известно как коленчатый вал с ходовым механизмом. При установке строкера потребуются более короткие шатуны. В противном случае поршни могут перемещаться в цилиндре слишком высоко, вызывая неприемлемо более высокое сжатие или удар о крышу цилиндра.

Коленчатые валы Stroker

для часто модифицируемых двигателей продаются в комплекте с более короткими шатунами и поршнями. Строкер-комплект для двигателя Mazda MX5 Miata 1.8L может преобразовать его в двигатель 2L по цене около 5500 долларов.

Офсетное шлифование

Альтернативой установке коленчатого вала с ходовым механизмом является шлифовка шейки шатуна до меньшего размера со смещением - таким образом центр шейки смещается от средней линии коленчатого вала.Это проиллюстрировано выше.

Видно, что при перемещении центра шейки штока радиус кривошипа был увеличен, что привело к увеличению хода. Это специализированная обработка, и достигаемое увеличение хода будет зависеть от толщины шейки.

Как делается коленчатый вал

В большинстве серийных двигателей используется чугунный коленчатый вал, который изготавливается путем заливки расплавленного чугуна в форму. Кованые коленчатые валы используются в некоторых высокопроизводительных двигателях.Кованый коленчатый вал изготавливается путем нагревания стального блока до докрасна, а затем с использованием чрезвычайно высокого давления для придания ему формы.

После ковки или литья коленчатого вала его шейки и опорные поверхности обрабатываются идеально гладкими. Просверливаются масляные каналы или масляные каналы. Серийные двигатели обычно оставляют перемычки с их первоначальной черновой отделкой, но двигатели с высокими характеристиками обрабатывают каждую часть коленчатого вала, чтобы уменьшить сопротивление масла.

Шейки должны быть тверже, чем их подшипники, чтобы износ заменялся на подшипниках, а не на коленчатом валу, который должен служить в течение всего срока службы двигателя.Производственный процесс будет включать упрочнение этих участков посредством азотирования или термообработки.

Коленчатые валы с исключительно высокими характеристиками и нестандартными характеристиками изготавливаются из блока твердого материала, в результате чего получается коленчатый вал в виде заготовки. Производство одноразового коленчатого вала с помощью этого процесса будет стоить как минимум около 3000 долларов, поэтому он предназначен для соревнований, гонок и восстановления.

.

Как измерить зазор в подшипниках двигателя »Блог NAPA Know-How

При восстановлении двигателя нет ничего более важного, чем получение правильного зазора в подшипнике. Каждый двигатель имеет свои собственные характеристики зазора в подшипниках, но процедура измерения не меняется. Существует два основных метода проверки зазора подшипника - Plastigage® или манометры.

Plastigage®

Plastigage® имеет свое место, так как служит для резервирования и проверки зазоров в подшипниках.Plastigage® - это специальный пластик, который при сжатии расширяется в определенной степени. Plastigage®, продаваемый в виде гильз с резьбой для определенных диапазонов толщины, действительно хорошо работает в ситуациях, когда компоненты снимаются не полностью, например, при замене подшипников в двигателе и других применениях, не связанных с автомобилем. Plastigage®, впервые поступивший в продажу в 1948 году, является довольно точным и предпочтительным методом для многих энтузиастов DIY.

Plastigage® весьма полезен, поэтому не выбрасывайте его автоматически.Это хороший способ проверить ваши измерения.

На самом деле, правильный способ проверить зазоры подшипников - это использовать соответствующие инструменты. Чтобы проверить зазоры для стержня и коренных подшипников, вам понадобится набор микрометров и индикатор для измерения внутреннего диаметра. Они легко доступны по бюджетным ценам, но если вы собираетесь использовать их много, рекомендуется использовать инструменты более высокого качества.

Микрометр

Выглядит как подкова с круглой ручкой, прикрепленной к одной ножке. Микрометры обычно регулируются только на 1 дюйм, поэтому для выполнения работы вам потребуется несколько размеров.Набор от 1 до 6 дюймов обычно имеет размеры, необходимые для большинства работ.

Это полный набор микрометров, который подойдет практически для всего, что вам может понадобиться для работы в автомобиле.

Циферблатный индикатор

В этом инструменте используется индикатор часового типа на стойке с небольшим измерительным прибором на колесах. Они регулируются с помощью градуированных удлинителей стоек, которые увеличивают диаметр измерительного круга.

Циферблатный калибр измеряет внутреннюю поверхность круглых отверстий, таких как шейки подшипников. Этот инструмент может измерять отверстия диаметром от 2 до 6 дюймов.

Оба инструмента необходимы для проверки внутренних и внешних размеров коленчатого вала, шатунов и шейки блока цилиндров, а также толщины самих подшипников. Сделать все это может быть непросто, поэтому вот несколько советов, которые помогут вам пройти через этот процесс.

Использование микрометра означает соблюдение нескольких правил. Ключ к микрометру - не затягивать его слишком сильно. Есть две ручки - большая, а затем меньшая.Меньшая ручка щелкает, когда микрометр находится в контакте с деталью. НЕ используйте ручку большего размера, чтобы закрепить микрофон на детали, так как это может повредить инструмент.

Показания микрометра могут сбивать с толку, они градуированы иначе, чем линейки. На внутреннем цилиндре нанесены отметки 0,100 дюйма (большой) и 0,025 дюйма (маленький). Как только вы достигнете этих отметок, шкала на наперстке (большая вращающаяся ручка) вступит в игру для получения конечных размеров. Наперсток имеет шкалу 0,001 деления от.000 до 0,025 ”.

Хеш-метки показывают, как вы читаете микрометры. Это требует некоторой практики, и, если вы не будете использовать их ежедневно, со временем вы забудете. Просто будьте терпеливы.

Измерение внешнего диаметра

Это довольно просто, просто выберите микрометр, который охватывает необходимый диапазон, и произведите измерение. Рекомендуется проверить деталь в трех разных местах, держась подальше от смазочных отверстий, поскольку они могут нарушить измерения из-за фаски.

Измерительные подшипники

Несмотря на то, что подшипники достаточно плоские, их нельзя точно измерить штангенциркулем, вместо этого вам понадобится микрометр.Существуют специальные микрометры для измерения круглых внутренних поверхностей, но вам не обязательно иметь один из них. Вместо этого вы можете использовать вал сверла (хорошего качества и использовать гладкую часть, а не рифленую). Поместите сверло на внутренний изгиб и затем измерьте подшипник. Вычтите толщину сверла (измеряйте, а не предполагайте), и вы получите толщину подшипника.

Трубчатый микрофон полезен для измерения подшипников и деталей, изогнутых внутрь.В крайнем случае, вы можете использовать сверло или толкатель и внешний микрофон. Вот как измеряются подшипники. НЕ ИСПОЛЬЗУЙТЕ штангенциркули, вы можете легко поцарапать баббитовый материал и испортить подшипник, к тому же они недостаточно точны.

Использование прибора с круговой шкалой

Для настройки прибора с круговой шкалой необходимо использовать микрометр. Вам нужен базовый размер отверстия, достаточно грубого. Установите калибр чуть больше диаметра, используя правильные удлинители. Установите микрометр на требуемый размер отверстия, затем поместите датчик между внутренней частью микрофона и покачивайте его вперед-назад и из стороны в сторону.Отметьте минимальное показание и обнулите манометр до этого показания.

Для настройки индикатора внутреннего диаметра используются как датчик внутреннего диаметра, так и микрометр. Убедитесь, что измерительные концы имеют квадратную форму внутри упоров микрометра (не показаны)

Измерения внутреннего диаметра

Установив калибр с круговой шкалой на правильный размер, поместите калибр внутрь цапфы или конца стержня и покачивайте манометр вперед и назад и бок о бок, как в процессе установки. Обратите внимание на наименьший диаметр, то есть размер журнала.Как и при внешних измерениях, снимайте показания в трех разных местах. Одно замечание - отверстие должно быть таким, каким оно будет использоваться, поэтому затяните колпачки до их правильных характеристик, и они должны быть чистыми, без масла вообще.

Поместите датчик внутрь цапфы и медленно перемещайте его, пока не найдете наибольшее измерение. Снимите показания в трех местах.

Интерпретация чисел

К настоящему времени у вас будут спецификации на шатуны и шатуны коленчатого вала, шейки обоих и спецификации на подшипники.Вычтите спецификацию кривошипа из спецификации шейки, а затем вычтите спецификацию подшипника из этого результата. Эта цифра и есть зазор. Зазор подшипника зависит от двигателя и предполагаемого использования. Стандартные уличные двигатели обычно имеют более узкие зазоры в подшипниках, в то время как двигатели с высокими рабочими характеристиками работают немного свободно. С помощью этих методов вы сможете настроить свой двигатель до нужных характеристик.

Ознакомьтесь со всеми деталями двигателя, доступными на сайте NAPA Online, или доверьтесь одному из наших 17 000 пунктов обслуживания AutoCare NAPA для текущего обслуживания и ремонта.Для получения дополнительной информации о том, как измерить зазор подшипников двигателя, поговорите со знающим экспертом в местном магазине NAPA AUTO PARTS.

.

Смотрите также