Как подобрать тормозной резистор для частотного преобразователя


Тормозной резистор для частотного преобразователя-расчет

Тормозной резистор применяется для быстрого понижения скорости или торможения двигателя, особенно, если двигатель работает с большим инерционным моментом.

При торможении асинхронный двигатель работает в режиме генератора, его отдаваемая электрическая энергия способна вызвать перенапряжение в сети постоянного тока, для гашения этого эффекта применяют тормозные резисторы.

Что такое динамическое торможение частотного преобразователя

Для обеспечения безопасной остановки электродвигателя в конструкции преобразователя частоты предусмотрен режим торможения. Например, в преобразователях частоты с АИН (автономным инвертором напряжения) присутствует возможность торможения электродвигателя постоянным током, который поступает в статорную обмотку.

Если выпрямитель не реверсивный, существует режим динамического торможения частотного преобразователя  с введением резистора в цепь статора двигателя. Динамическое торможение частотного преобразователя с использованием тормозных резисторов  позволяет при понижении энергопотребления уменьшить нагрев электродвигателя. Благодаря динамическому регулируемому торможению инвертор становится полностью управляемым устройством.

Рис. №1. Тормозной резистор РБ4

Возможность использования торможения постоянным током накладывает на преобразователь частоты некоторые ограничения. Так, его можно использовать только в установках с нечастым режимом торможения и только в тех случаях,  когда отсутствует нагрузка, способная перевести электрический двигатель в генераторный режим, при котором велика вероятность перегрева двигателя и аварийное отключение.

Динамическое торможение при изменении сопротивления добавочных тормозных резисторов позволяет получить различные желаемые искусственные характеристики электродвигателя.

Тормозные прерыватели и тормозные резисторы, незаменимые компоненты частотного преобразователя

Преобразователь частоты не использующий добавочное устройство для торможения обладает тормозным моментом, который равен 30% от номинального.

Тормозные прерыватели и тормозные резисторы, составляющие элементы дополнительного тормозного устройства. Тормозной прерыватель, как правило, встроенного типа, тормозной резистор относится к внешним компонентам.

Тормозной резистор легкой категории (LD) служит для облегчения режимов торможения и обеспечивает момент торможения, который равен номинальному и длится 5 сек при выполнении торможения до нулевой скорости.

Рис. №2.  Пожаростойкий проволочный тормозной резистор 80 Ом, 1000Вт, большой мощности и с малым сопротивлением

Тяжелый режим работы имеет свои, предназначенные для этого резисторы типа HD. Они служат для создания тормозного момента, равного номинальному при скорости номинального значения 3 сек + 7сек, при включении торможения к нулю.

Рабочий цикл для этих режимов происходит не чаще, чем 1 раз в течение 2 мин. Резисторы HD изготавливают из стали, резисторы малой мощности выполняются из алюминиевого профиля. Резисторы с большой мощностью оборудованы термисторами и включают в комплект тепловой ключ с температурой расцепления до 220оС.

Пример тормозных резисторов преобразователя частоты ОВЕН

Примером тормозных резисторов служат балластные резисторы, подключаемые с помощью встроенных тормозных ключей. Хороший пример – это тормозные резисторы ОВЕН РБх.

Их краткое описание.

Они считаются обязательной опцией в конструкции частотного преобразователя, предусмотренного для работы с подъемно-транспортными машинами (транспортеры или подъемники), с высокоинерционными механизмами, например: дымососами, рольтангами или тягодутьевым оборудованием. Подобные ПЧ применяются для станочного оборудования различных типов, пример: токарные станки, шлифовальные или сверлильные. Резистор РБ2, РБ3, РБ4 отличают следующие достоинства

  1. Компактный монтаж, он помещается в шкаф управления;
  2. Резистор работает в тяжелых условиях с увеличенной мощностью, выделяемой при торможении.

Устройство представляет собой проволочную конструкцию с основанием из керамического или алюминиевого корпуса. Существует два типа резисторов, рассчитанных на 80 Ом, 1 кВт и на 400 Ом, 200 кВт. Резисторы, используемые в Пч, могут быть одного типа, или может быть использована группа резисторов, подключенных параллельно. Резисторы промышленного использования обладают степенью защиты IP54 и IP20.

Рис. №3.  Основные технические параметры тормозных резисторов ОВЕН РБх

Рис. №4.  Схема подключения тормозных резисторов к преобразователю частоты

Как подобрать тормозной резистор?

Выбор тормозных резисторов зависит от номинала по мощности преобразователя частоты. Для всех номиналов существует возможность работы в тяжелом режиме. Наиболее часто такие преобразователи работают в грузоподъемных машинах и оборудовании (40%). Важно учитывать и легкий режим работы (10%), он характерен для конвейеров или дымососов.

В тяжелом режиме работают резисторы РБ2 и РБ4.

Выбор тормозных резисторов осуществляется с помощью расчета или с использованием табличных значений.

Расчет тормозного резистора

Расчет и изготовление тормозного резистора частотника зависит от использования алгоритма, зависящего от максимального момента торможения Мторм.Момент зависит от следующих характеристик:

  • начальной скорости замедления n1;
  • конечной скорости замедления n2;
  • прогнозируемого времени замедления t2;
  • общего момента инерции J, который находится суммой моментов инерции в соответствии со скоростью вала электродвигателя

Формула (1) максимального момента торможения

Формула (2) максимальной мощности торможения

Формула (3) максимальной электрической мощности торможения.

Рис. № 5. Таблица формул расчета тормозного резистора

Коэффициент снижения нагрузки торможения зависит от мощности привода и находится по таблице.

Рис. №6.  Выбор коэффициента уменьшения нагрузки торможения

Важно: во время работы электродвигателя в комплектации с редуктором учитывается КПД редуктора. В случае отсутствия редуктора КПД равно единице.

Что делать, когда резистора нет

Частотник и тормозной резистор – обязательная конструктивная комплектация привода, но может оказаться, что резистор отсутствует. Что делать, когда резистора нет?

В этом случае привод включается в работу в зависимости от следующего алгоритма действий:

  1. В настройках указываем отсутствие тормозного резистора.
  2. В некоторых типах частотного преобразователя указываем торможение постоянным током.
  3. В случае отсутствия резистора выбираем пониженную частоту, включаем реверс, постепенно понижаем частоту на ноль, переходим в обычный режим и на обычное значение частоты.

Назначение тормозного резистора для преобразователя частоты, расчет

Автор Aluarius На чтение 7 мин. Просмотров 980 Опубликовано

В статье рассказано какие существуют типы тормозных резисторов. Указаны их основные характеристики. Описан принцип действия, этапы расчета, а также даны советы по подключению.

тормозной резистор DZ 500Вт, 150 Ом.

Назначение тормозного резистора для преобразователя частоты, расчет

Принцип работы тормозного резистора

Устройство

Тормозной резистор – это элемент электрического аппарата механизма с большой инерционной массой. При динамическом торможении он поглощает излишне выделяемую электрическую энергию и конвертирует в тепловую.

При снижении или увеличении скорости, кинетическая энергия двигателя превращается в электрическую и оказывает воздействие на клеммы преобразователя частоты (ЧП). Такой эффект может вызвать перегрузку с последующим отключением частотника. Чтобы погасить избыток энергии и преобразовать мощность в тепло, в машинах и механизмах, используют тормозной резистор для частотного преобразователя.

Для чего используется

Тормозной резистор (ТР) используется если:

  • существует потребность механизма в более эффективном торможении;
  • нужно исключить ошибки, вызванные перенапряжением, возникшим при подключении мотора к увеличенной нагрузке;
  • необходимо обеспечит устойчивую работу электродвигателя в подъемном механизме.

Типы тормозных резисторов

Существует два вида тормозных резисторов, отличающихся материалом корпуса:

  1. Алюминиевые;
  2. Керамические.

По сравнению с керамическими, алюминиевые резисторы больше используются в погрузочно-разгрузочных машинах и агрегатах (ленточный конвейер, башенный кран). Они удобные, аккуратные, «упакованные» в оболочку. Их можно прикрепить на теплопроводное основание. Для увеличения теплосъема можно помещать в теплоотводящую жидкость. Но в цене они дороже керамических.

Алюминиевый тормозной резистор

Также резисторы различают по типу заявленной мощности. При выборе нужно ориентироваться на два основных показателя: сопротивление R и рассеиваемую мощность P.

Для лучшего сочетания некоторые резисторы собирают блоками из нескольких штук. При этом номиналы у всех в комплекте должны быть одинаковыми. Если прибор с подходящей мощностью отсутствует, то создают последовательное или параллельное соединение и подключают таким образом.

Резисторные блоки подключают напрямую при помощи тормозного модуля. Все зависит от того, какой преобразователь используется. Если процесс торможения занимает больше времени чем требуется, рекомендуется выполнить проверку ТР на наличие больших токов. Поэтому рекомендуется выбирать ТР с увеличенной номинальной мощностью, нежели указано в инструкции.

Механизмы, работа которых напрямую связана с электродвигателем, достаточно будет стандартного сопротивления тормозного резистора. Для более крупных машин сопротивление подбирается исходя из длительности и особенностей тормозного процесса.

Справка! Напряжение звена постоянного тока при замыкании тормозного ключа составляет 760 вольт.

Основные характеристики тормозных резисторов

Характеристики резисторов должны отвечать параметрам электропривода, типу частотного преобразователя, режимам пуска и эксплуатации двигателя. Тормозные резисторы выбирают:

  • По циклу торможения;
  • Числу фаз;
  • Номинальному напряжению;
  • Максимальной и номинальной мощности;
  • Сопротивлению;
  • Классу защиты;
  • Режиму работы электродвигателя.

Расчет делают на стадии проекта электрического привода или при модернизации.

Циклы торможения

Динамическое торможение – рассеивание энергии двигателя на блоке резисторов, подключенном к шине постоянного тока на преобразователе частот.

Различают три вида торможения:

  1. Резистивное – направление энергии торможения от двигателя к подключенному резистору;
  2. Переменным током – энергия торможения распределяется путем изменения состояний потерь в двигателе;
  3. Постоянным током – энергия действует в качестве сигнала индукционного торможения.

Циклы торможения различаются на низко инерционные (НИ) – 10% и высоко инерционные (ВИ) – 40%. Резисторы с НИ циклом используются в бытовых электрических приборах (вентиляторы) а с ВИ циклом в подъемно-транспортных механизмах (краны, лифты, подъемники).

Число фаз, номинальное напряжение

По числу фаз ТР делятся на одно и трехфазные. Главное различие в величине напряжения. К первым можно отнести электрические приборы с напряжением 220-240 вольт. Вторые рассчитаны на использование механизмов с напряжением 380-480 вольт. Трехфазные, при соблюдении техники безопасности и правил подключения, могут применяться и в машинах с меньшим напряжением.

Максимальная и номинальная мощность

При выборе тормозного резистора нужно основываться на номинальную мощность. Производитель указал параметр в инструкции, как расчетную величину на протяжении эксплуатации прибора. Максимальная мощность также указана в характеристиках, но постоянная работа в «авральном» режиме приведет к преждевременному износу и поломке изделия. Показатели мощности колеблются в пределах от 0,2 до 50 кВт. Если необходимо обеспечить мощность свыше 50 киловатт, то путем параллельного подключения нескольких ТР, можно достичь показателя в 450-500 кВт.

Важно! Если в выходном транзисторе произошло короткое замыкание, то преобразователь частоты нужно отключить от сети с помощью выключателя. Это предотвратит рассеяние мощности в тормозном резисторе.

Сопротивление

В зависимости от скорости торможения, определяют величину сопротивления. Если сопротивление больше, то время торможения меньше. И наоборот. Показатели от 2 до 180 Ом. Сопротивление присоединяют к клеммам преобразователя частоты и к разъемам «вход» внешнего тормозного прерывателя. В зависимости от мощности частотника, происходит подбор номинального сопротивления. Сопротивление цепи выбранного тормозного резистора не должно превышать рекомендованного значения.

Внимание! Если резистор будет с повышенным омическим сопротивлением, то возникнет вероятность автоматического отключения преобразователя частоты.

Класс защиты

Класс защиты IP — система степеней защиты оболочки электрооборудования от проникновения твёрдых предметов и воды. Маркируется международным знаком IP и двух цифр после него.

Первая цифра – попадание твёрдых предметов

Диаметр – 0 нет защиты
1 > 50 мм большие поверхности тела, нет защиты от сознательного контакта
2 > 12,5 мм пальцы и подобные объекты
3 > 2,5 мм инструменты, кабели и т.п.
4 > 1 мм большинство проводов, болты и т.п.
5 пылезащищённое некоторое количество пыли может проникать внутрь, однако это не нарушает работу устройства.

Полная защита от контакта

6 пыленепроницаемое пыль не может попасть в устройство.

Полная защита от контакта

Вторая – защита от воды

нет защиты
1 вертикальные капли вертикально капающая вода не должна нарушать работу устройства
2 вертикальные капли под углом до 15° вертикально капающая вода не должна нарушать работу устройства, если его отклонить от рабочего положения на угол до 15°
3 падающие брызги защита от дождя. Вода льётся вертикально или под углом до 60° к вертикали
4 брызги защита от брызг, падающих в любом направлении
5 струи защита от водяных струй с любого направления
6 морские волны защита от морских волн или сильных водяных струй. Попавшая внутрь корпуса вода не должна нарушать работу устройства
7 кратковременное погружение на глубину до 1м при кратковременном погружении вода не попадает в количествах, нарушающих работу устройства. Постоянная работа в погружённом режиме не предполагается
8 длительное погружение на глубину более 1м полная водонепроницаемость. Устройство может работать в погружённом режиме

Режим работы электродвигателя

У электродвигателей есть два режима работы: двигательный и тормозной.

Двигательный режим – преобразование электрической энергии в механическую. Тормозной – поглощение механической энергии и преобразование ее в электрическую.

Чтобы остановить работающий электродвигатель существует два способа. Когда остановка происходит по инерции – режим выбега. После подачи сигнала отключения на ЧП, ротор электромотора вращается по инерции. Когда идет процесс управляемого замедления – это режим торможения. При таком режиме время замедления пользователь настраивает сам.

Как правильно рассчитать тормозной резистор для частотного преобразователя

Исходные данные: номинальное напряжение, мощность, частота вращения электродвигателя, момент инерции, время остановки и т.д.

Этапы расчета

Расчет делается в несколько этапов:

  1. Определение максимального момента торможения:

где n 1 – начальная скорость замедления;

n 2 – конечная скорость замедления;

J – сумма моментов инерции на валу;

t – проектное время замедления.

  1. Расчет механической мощности:

где М – максимальный момент торможения.

  1. Вычисление электрической мощности:

где к – коэффициент уменьшения нагрузки.

  1. Расчет максимального тормозного сопротивления:

где U – напряжение звена постоянного тока;

Р – электрическая мощность торможения.

  1. Определение мощности добавочного сопротивления:

Справка! Если передаточный механизм не включен в состав электропривода, значение КПД редуктора считается равным единице.

Советы по подключению тормозного резистора

Существует два способа подключения:

  1. Внутренний, когда резистор располагается внутри преобразователя частот;
  2. Внешний, через прерыватель, подключенный к шине внутри преобразователя.

На выбор подключения влияют конструктивные особенности конкретного агрегата и мощность преобразователя частоты. Первый способ подходит для ЧП до 30 кВт. Второй предназначен для более мощных.

Плавный пуск кран-балки

Несколько советов по подключению:

Перед началом работ измерьте напряжение на клеммах.

Обесточьте силовой модуль.

Соблюдайте правила монтажа, во избежание замыкания.

Обеспечьте сохранность кабеля от механических повреждений.

Используйте кабель с двойной изоляцией.

Прокладывайте в раздельных каналах или трубах.

Применять соединительные кабели длиной не более 100 метров при допустимом сечении вывода – 35 мм².

При выборе резистора следует начать с требований, предъявляемых процессом. Изучить технические характеристики. Рассмотреть специально для конкретного применения. В некоторых случаях решением может быть сочетание последовательного и параллельного соединения.

Расчет и изготовление тормозного резистора частотника - Электропривод

Вот выдержка из мануала для LENZE -Не реклама!

Внешний тормозной резистор необходим для торможения инерционных нагрузок или

больших интервалов, когда мотор находится в генераторном режиме.

Тормозной ключ встроен в преобразователь частоты и подключает внешний тормозной

резистор, когда напряжение на шине постоянного тока превышает заданный порог. С

внешним тормозным резистором процесс торможения всегда управляем.

Способ томожения постоянным током используйте только для малоинерционных нагрузок.

10.1.1 Тормозные резисторы

Преобразователь Резистор

 

1- фазные

E82EV(250вт)1K2C

E82EV(370вт)1K2C ERBM 470R 020W

E82EV(550вт)1K2C

E82EV(750вт)1K2C ERBM 200R 100W

E82EV(1,5кВт)2K2C ERBM 082R 150W

E82EV(2,2кВт)2K2C ERBM 052R 200W

 

3-х фазные

E82EV(550вт)K4C

E82EV(750вт)K4C ERBM 470R 100W

E82EV(1,5кВт)2K4C ERBM 370R 150W

E82EV(2,2кВт)K4C ERBM 240R 200W

E82EV(3кВт)K4C ERBD 180R 300W

E82EV(4кВт)K4C ERBD 100R 600W

E82EV(5,5кВт)K4C ERBD 082R 600W

E82EV(7,5кВт)K4C ERBD 068R 800W

 

 

Тормозной резистор может сильно нагреваться, вплоть до возгорания. Поэтому он должен

крепиться таким образом, чтобы высокие температуры не повредили другое

оборудование. Для защиты от перегрева используйте термодатчик для отключения

преобразователя от сети.

Изменено пользователем tifr

ОБЗОР И ПРИМЕНЕНИЕ ДРОССЕЛЕЙ И ТОРМОЗНЫХ РЕЗИСТОРОВ ДЛЯ ЧП!

В данной статье рассмотрим периферийное оборудование для частотных преобразователей, а именно для чего применяются входные и выходные дроссели и когда их установка действительно необходима. Также обсудим тормозные резисторы, как они подбираются и в каких случаях используются. Частотный преобразователь это сложное устройство, которое способно генерировать высокие гармоники, которые сильно сказываются на другом второстепенном оборудовании. В связи с этим и другими причинами, которые мы рассмотрим чуть позже, было создано дополнительное оборудование для частотных преобразователей.

Входные (сетевые) дроссели чаще всего используются в силовых цепях между частотным преобразователем и  защитным автоматическим выключателем. Входные дроссели также называют входными реакторами или сетевыми фильтрами. Основные применения входных дросселей заключается в повышении коэффициента мощности частотных преобразователей, снижение нарастания пусковых токов и самое главное - понижение высоких гармоник питающего напряжения. Сетевые дроссели желательно использовать в любой питающей сети независимо от её качества, но на практике входные дроссели чаще используются на более мощных частотных преобразователях (от 15кВт), так как при более мощных моделях частотных преобразователей воздействие высоких гармоник на сопутствующее оборудование более выражено и может негативно сказываться на нем. Основными показателями входного дросселя является максимальный длительный ток и индуктивность

Формула расчёта: U=2пFLI,

  • L - индуктивность входного дросселя, Гн
  • I - максимальный длительный ток, А
  • F - номинальная (рабочая) частота, Гц

Падение напряжение на дросселе (U) не должно превышать 5%. Номинальный (максимальный) ток дросселя должен быть выше или равен номинальному току частотного преобразователя!

Как было сказано ранее сетевые дроссели желательны, но не обязательны. Рассмотрим случаи, когда входными дросселями возможно пренебречь:

  • мощность двигателя значительно ниже номинальной мощности частотного преобразователя
  • в питающей сети отсутствуют приборы с большими пусковыми токами
  • низкие значения тока короткого замыкания в питающей сети (высокое сопротивление кабельных линий)

Выходные (моторные) дроссели предназначены для подавления электромагнитных помех, снижения уровня шума двигателя и способствуют ограничению нарастания амплитуды напряжения du/dt. Время нарастания непосредственно влияет на срок службы изоляции двигателя. Основной задачей моторного дросселя является превращение ШИП выхода частотного преобразователя в подобие синусоиды. Таким образом снижаются потери в кабеле между частотным преобразователем и двигателем, а также потери на вихревые токи в сердечнике ротора и статора электродвигателя. Выходные дроссели часто называют выходными реакторами, моторными дросселями, выходными фильтрами, синусоидальными фильтрами. При высоких гармониках на выходе частотного преобразователя происходит повышение емкостных токов, которые приводят к потерям мощности при длине кабеля более 20 метров. Для снижения данного эффекта устанавливается выходной дроссель. Необходимо помнить, номинальный ток выходного дросселя должен быть равен или больше максимального тока двигателя. Некоторые модели частотных преобразователей имеют встроенные выходные дроссели.

Тормозные резисторы - устройства поглощающие излишки энергии вырабатываемые двигателями в режимах генератора и при частых включениях/отключениях двигателей. При снижении или увеличении скорости двигателя, кинетическая энергия превращается в электрическую и тем самым может произойти перегрузка частотного преобразователя. Тормозной резистор работает совместно с тормозным прерывателем, который при избыточном напряжении на щине постоянного тока частотного преобразователя подключает к шине постоянного тока тормозной резистор. Тормозной прерыватель является управляющим устройством, которое при необходимости самостоятельно подключает тормозной резистор на шину постоянного тока. Основное применение тормозных резисторов является необходимость обеспечения устойчивой работы двигателя в подъёмных механизмах, так как в них сильно выражается момент торможения. Тормозной прерыватель бывает выносным, либо встроенным в частотный преобразователь. Например, частотные преобразователи M-Driver с мощностью до 22кВт включительно  обладают встроенными тормозными прерывателями, что обеспечивает дополнительную экономию. На практике тормозные резисторы устанавливаются крайне редко, так как современные частотные преобразователи обладают оптимальными режимами торможения без дополнительных внешних тормозных резисторов. Как правило тормозные резисторы изготавливаются из алюминия или керамики, так как они обладают высокой теплоотдачей. При выборе тормозных резисторов необходимо ориентироваться на два основных параметра: сопротивление и рассеиваемую мощность. Характеристики тормозных резисторов должны отвечать параметрам двигателя и частотного преобразователя, а именно: числу фаз, номинальной мощности, сопротивлению, циклам торможения, номинальному напряжению, классу защиты IP. 

В некоторых частотных преобразователях предусмотрена функция ограничения перенапряжения на шине постоянного тока. В связи с этим тормозной резистор не используется, но при этом поддерживается максимальный тормозной момент. Существуют и другие режимы торможения (без тормозного резистора):

  • торможение постоянным током (для экстренного торможения)
  • удержание двигателя в остановленном состоянии с помощью постоянного тока (возможно использовать непродолжительное время для предотвращения перегрева двигателя)

Наша компания поставляет большое количество бюджетных частотных преобразователей и периферийного оборудования к ним. Мы можем подобрать частотные преобразователи, дроссели, тормозные резисторы по Вашим потребностям, для этого свяжитесь с нами любым удобным для Вас способом!

ПЧ.РУ - Тормозные прерыватели и резисторы.

Рекуперативное торможение на частотно-регулируемом приводе.

Вспомним устройство преобразователя частоты.  

Рисунок 1 - Принципиальная схема силовой части ПЧ.

 Трехфазное переменное напряжение ~380В, выпрямляется 6-пульсным выпрямителем и становится 537В постоянного тока. Далее, с помощью инвертора (ШИМ) это напряжение преобразуется обратно в переменное, но уже регулируемое по частоте и амплитуде.

 При торможении электропривода с высокоинерционной нагрузкой, двигатель может переходить в генераторный режим. Генерируемая при этом энергия возвращается в частотный преобразователь и выпрямляется на обратных диодах IGBT-транзисторов, следовательно растет напряжение на звене постоянного тока (ЗПТ). Часть этого напряжения (20-30%) может быть рассеяно на силовых элементах, на разрядных резисторах ЗПТ и др. Именно об этом и говорит характеристика преобразователя: «Тормозящий крутящий момент. ~ 20% без тормозного резистора». Однако, если этого не достаточно, то напряжение может вырасти до опасного значения. Чтобы избежать выхода из строя, преобразователь вынужден отключать выход и индицировать вам сообщение о неисправности: «OV» - over voltage - повышенное напряжение на звене постоянного тока. Порог срабатывания защиты от перенапряжения, как правило зависит от уставки входного напряжения.

Чтобы разрядить перенапряжение требуется внешний тормозной резистор, и силовой ключ который открывал бы цепь при повышенных значениях и закрывал при нормальных - чтобы энергия сети не рассеивалась на резисторах. Таким ключом является тормозной прерыватель. На преобразователях небольшой мощности примерно до 11кВт, используется один силовой модуль, объединяющий выпрямитель, инвертор, термодатчик и тормозной ключ (как на рисунке 1). На преобразователях большей мощности используется внешний прерыватель.

Как работает тормозной прерыватель. 

Рисунок 2 - как работает тормозной прерыватель.

Ua - амплитудное значение напряжения

Uэф -эффективное значение напряжения

t - время открытия ключа прерывателя

T - переиод импульса ШИМ

tраб - время работы прерывателя

При достижении порога срабатывания, тормозной прерыватель открывает цепь импульсами ШИМ периодом Т (~20msec). Мощность рассеивания на резисторе Pрез за время работы прерывателя tраб будет равно площади под Uэф (заштрихованная область).

Pрез = Uэф^2 / Rрез = I^2 * Rрез.

Следовательно, регулируя значение открытия ключа t (~5msec) можно регулировать мощность рассеивания и ток протекающий через тормозной резистор. Значение t регулируется автоматически в зависимости от значения напряжения на звене постоянного тока. Чем выше напряжение на ЗПТ, тем больше время t и больше мощность рассеивания.

В качестве резисторов используют пожаростойкие проволочные резисторы с большой мощностью рассеивания. Сопротивление и мощность резисторов должна рассчитываться в соответствии с каждой решаемой задачей, однако у каждого производителя есть рекомендуемые значения, применяемые в большинстве решаемых задач. Однако для сложных задач, расчеты все-таки рекомендовано провести, например, продолжительное опускание груза краном.

Отличный пример расчета тормозных сопротивлений есть в «Технической коллекции Schneider Electric», называется «Выпуск № 7 Методика по силовому расчету частотнорегулируемых электроприводов крановых механизмов». 

Существуют такие применения, где двигатель управляемый преобразователем частоты всегда работает в генераторном режиме, например, нагрузочные стенды. В таких системах эффективнее и экономичнее использовать блоки рекуперации энергии - устройства возвращающие энергию генератора в сеть. Такие блоки могут работать продолжительное время и существенно экономят электроэнергию.

Тормозной резистор. Принцип действия - Статьи

В момент торможения асинхронного двигателя происходит передача энергии обратно в частотный преобразователь, который работает в режиме генератора. В результате чего, в цепях постоянного тока наблюдаются завышенные показатели. Частотный преобразователь (ЧП) старается вернуть его в нормальное состояние (снизить), увеличивая частоту на выходе, вследствие чего происходит уменьшение скольжения двигателя.

Если двигатель испытывает невысокие неинерционные нагрузки, торможение происходит за счет потерь самого двигателя, работающего с мощностью, приближенной к 20% от номинальной. Это подходит лишь в том случае, когда работают с небольшой кинетической энергией и время торможения не имеет особого значения (не критично).

Для экстренного (быстрого) торможения принято использовать тормозной резистор – специальное устройство:

·        обеспечивающее постоянное потребление энергии торможения, которая исходит от двигателя;

·        рассеивающее энергию торможения, которая преобразуется в тепловую энергию.

Данный режим наблюдается тогда, когда снижается частота вращения вала, для которого характерна инерционная нагрузка. Подобным образом работает вентиляционное, конвейерное и крановое оборудование.

Если же уменьшение общей частоты вращения двигателя происходит намного медленнее, чем снижение частоты на преобразователе, то устройство постепенно переходит в так называемый генераторный режим. Для него характерно энергия вращения двигателя (механическая) преобразовывается в электрическую энергию. Полученная электроэнергия, попадая в одно из звеньев постоянного тока ЧП, начинает накапливаться в специальных конденсаторах, напряжение которых постепенно растет. Важно понимать, что подобное увеличение напряжения в определенный момент может спровоцировать как пробой конденсатора, так и его полное разрушение.

Решить возникшую проблему поможет установка специального элемента (выпрямителя) в конструкцию частотного преобразователя. При этом наблюдается процесс рекуперации, при котором вся энергия передается в питающую сеть. Но, стоимость такого оборудования существенно увеличивается (примерно на порядок).

Бывают такие частотные преобразователи, в которых предусмотрено использование единой (общей) шины постоянного тока, что позволяет передавать энергию другим приводам, работа которых основывается на двигательном режиме. Хотя очень сложно, а иногда и невозможно, добиться нормальной работы приводов (двигателя), один из которых работает в двигательном режиме, а другой – в режиме торможения.

Именно поэтому предпочтительней оказывается использование специальных тормозных резисторов, если в процессе эксплуатации предполагается накопление энергии торможения (возникает тормозной режим).

Определение минимального значения сопротивления такого резистора (тормозного) зависит от значения тока тормозного ключа (допустимого), который входит в схему преобразователя частоты. Максимальное же значение сопротивления и мощность тормозного резистора напрямую зависят от максимально возможного количества энергии, которая выделяется в процессе торможения привода.

 

 


 

Ω POWEROHM RESISTORS, INC. Тормозные резисторы для частотно-регулируемых приводов ПРИМЕНЕНИЕ ВЫБОР СТАНДАРТНОЙ КОНСТРУКЦИИ ПОЛЬЗОВАТЕЛЬСКИЕ РЕЙТИНГИ

Что такое регенерация?

Что такое регенерация? Ручное торможение / регенерация Обзор регенерации Редакция 1.0 Когда ротор асинхронного двигателя вращается медленнее, чем скорость, установленная приложенной частотой, двигатель преобразует

Дополнительная информация

ПРИВОД ПЕРЕМЕННОГО ТОКА С ЧАСТОТНЫМ УПРАВЛЕНИЕМ

ПРИВОД ПЕРЕМЕННОГО ТОКА С ЧАСТОТНЫМ УПРАВЛЕНИЕМ 1.0 Характеристики стандартных двигателей переменного тока Асинхронный двигатель с короткозамкнутым ротором - это тип электродвигателя, наиболее широко используемый в промышленности.Эта лидирующая позиция приводит в основном к

Дополнительная информация

РУКОВОДСТВО ПО ПРОДАЖАМ RC СЕТЕЙ

РУКОВОДСТВО ПО ПРОДАЖАМ ВВЕДЕНИЕ В последние разработки в области электронного оборудования выявлены следующие тенденции: Растущий спрос на станки с числовым программным управлением, робототехнику и технически совершенные устройства

Дополнительная информация

Расчет схемы трансформатора

Расчеты схемы трансформатора. Эта таблица и все связанные файлы находятся под лицензией Creative Commons Attribution License, версия 1.0. Чтобы просмотреть копию этой лицензии, посетите http://creativecommons.org/licenses/by/1.0/,

. Дополнительная информация

Реле контроля скорости SX2

SX2 Файл 850 Описание CONENS ............................................. ........ Страница Общая информация ....................................... ......... 2-3 Общая информация о SX2DV ................................... ........

Дополнительная информация

ЧАСТЬ 1 - ВВЕДЕНИЕ...

Содержание ЧАСТЬ 1 - ВВЕДЕНИЕ ... 3 1.1 Общие сведения ... 3 1.2 Характеристики сенсора ... 3 1.3 Технические характеристики сенсора (CDE-45P) ... 4 Рисунок 1-1 Размеры сенсора CDE-45P (стандартный, трансформируемый ) ... 4 ЧАСТЬ

Дополнительная информация

Распределительные трансформаторы сухого типа

8 TRASFORMERS Распределительный стол сухих трансформаторов (обычно используется) 1a.115 C Подъем F 1b. 80 C Подъем B 4. Настенные кронштейны1 Вт 6. Низкий уровень шума XdB ниже стандартного. LX Тип bg

Дополнительная информация

Система обнаружения утечки воды

Руководство по установке и эксплуатации системы обнаружения утечек воды 505-334-5865 ph 505-334-5867 факс www.rodisystems.com электронная почта: [email protected] 936 Highway 516 Aztec, NM 87410-2828 Изменения в руководстве и авторские права

Дополнительная информация

Руководство по установке и эксплуатации

DC DRIVE BC138 BC139 DC CONTROL Руководство по установке и эксплуатации 7/2001 MN708 СОДЕРЖАНИЕ Раздел Стр. I.Упрощенная инструкция по эксплуатации .......................................... 1 ii. Безопасность

Дополнительная информация

Руководство пользователя для CH-PFC76810

AA Portable Power Corp www.batteryspace.com, электронная почта: [email protected] Руководство пользователя для CH-PFC76810 1. Обзор Зарядное устройство CH-PFC76810 подходит для зарядки литиево-ионных аккумуляторных батарей, таких как

Дополнительная информация

PSR Компактная серия Описание

Описание Серия PSR - самая компактная из всех линейок устройств плавного пуска ABB, что позволяет разместить множество устройств в одном корпусе.Концепция системы с ручным пускателем двигателя обеспечивает

Дополнительная информация

... Электронный мягкий пускатель ...

. Электронный мягкий пускатель CT-START. От 6 A. до 900. A ......... CT START CT-START - это многофункциональная электронная система с микроконтроллером и тиристорами, предназначенная для использования со всеми 3-фазными короткозамкнутыми роторами

Дополнительная информация

Введение в электронные сигналы

Знакомство с электронными осциллографами сигналов Осциллограф отображает изменения напряжения во времени.При необходимости во время диагностики цепей используйте осциллограф для просмотра аналоговых и цифровых сигналов. Рис. 6-01

Дополнительная информация

Мишлен Северная Америка

www.centecinc.com Телефон SC: 864.527.7750 За пределами SC: 800.227.0855 Michelin North America Industrial Maintenance Техническое интервью Краткое описание Промышленное техническое обслуживание Техническое интервью Краткое описание The Technical

Дополнительная информация

Индукторы в цепях переменного тока

Катушки индуктивности в цепях переменного тока Название Раздел Резисторы, катушки индуктивности и конденсаторы влияют на изменение величины тока в цепи переменного тока и времени, в которое ток достигает своего максимального значения

Дополнительная информация

Управление двигателем постоянного тока Реверс

Январь 2013 г. Управление двигателем постоянного тока Реверсирование и «Ротор», который является вращающейся частью.В основном доступны три типа двигателей постоянного тока: - щеточный двигатель - бесщеточный двигатель - шаговый двигатель постоянного тока Электрические

Дополнительная информация

ГЕНЕРАТОРЫ ПРЯМОГО ТОКА

ГЕНЕРАТОРЫ ПРЯМОГО ТОКА Редакция 12:50 14 ноя 05 ВВЕДЕНИЕ Генератор - это машина, которая преобразует механическую энергию в электрическую, используя принцип магнитной индукции. Этот принцип

Дополнительная информация

Информация о приложении

Moog Components Group производит обширную линейку щеточных и бесщеточных двигателей, а также бесщеточные контроллеры.Цель этого документа - предоставить руководство по выбору и применению

. Дополнительная информация

Функция шунтовой блокировки 3066

Версия: январь 2004 г. Содержание Блок активации системы сигнализации Блок деактивации Цифровой цилиндр замка или интеллектуальное реле 1.0 Метод работы 4 1.1 Общие положения 4 1.2 Включение системы сигнализации 4 1.3 Включение

Дополнительная информация

КАТАЛОГ АВТОМОБИЛЬНЫХ СВЕТОВ

КАТАЛОГ АВТОМОБИЛЬНЫХ СВЕТОДИОДНЫХ СВЕТИЛЬНИКОВ # 74 Плоский светодиодный фонарь с клиновым элементом 44423 # 74 (T5) Плоский светодиодный фонарь с клиновым элементом.1 светодиод. Прочный, устойчивый к ударам и вибрации, мгновенное включение / выключение. Монохроматический (чистый) цвет, низкое тепловыделение, практически

Дополнительная информация

Словарь терминов обыкновенного журавля:

Глоссарий Common Crane Термины: 26 Регулируемые тормоза: электромеханическое устройство для управления замедлением крана. Балка моста: Подвижная балка, соединенная с концевыми тележками - поддерживает подъемник тележки и груз. Бамперы:

Дополнительная информация

Однофазное устройство плавного пуска

Руководство по установке и эксплуатации однофазного устройства плавного пуска 6/02 Содержание Раздел 1 Общие сведения................................................... 1 1 Общее описание .............................................. ..

Дополнительная информация

ИНСТРУКЦИЯ ПО УСТАНОВКЕ

ПАНЕЛИ УПРАВЛЕНИЯ ОСВЕЩЕНИЕМ 4 И 8 РЕЛЕ ИНСТРУКЦИИ ПО УСТАНОВКЕ ОБЗОР УСТАНОВКИ Инструкции по установке, содержащиеся в этом документе, служат руководством для правильной и надежной установки.

Дополнительная информация

РЕШЕНИЯ ДЛЯ УПРАВЛЕНИЯ ТЕПЛОМ

Электронный контроллер обогрева серии t2000 Обзор продукта / КОММУНИКАЦИИ ПЕРЕВОЗЧИК ВЗАИМОДЕЙСТВИЯ ЗАПРОС ДЛЯ ОТПРАВКИ Контроллер обогрева DigiTrace обеспечивает преимущества, присущие одиночному устройству

. Дополнительная информация

Сетевые реакторы и приводы переменного тока

Сетевые реакторы и приводы переменного тока Rockwell Automation Mequon Wisconsin Довольно часто линейные и нагрузочные реакторы устанавливаются на приводы переменного тока без четкого понимания того, почему и каковы положительные и отрицательные последствия

Дополнительная информация

Инженер-исследователь.оборудование. сила

Примечание по применению APT0406 Использование датчика температуры NTC, встроенного в силовой модуль Пьер-Лоран Думерг, инженер-разработчик, Microsemi Power Module Products 26 rue de Campilleau 33 520 Брюгге, Франция Введение:

Дополнительная информация

Рабочий лист EET272, неделя 9

Рабочий лист EET272 Неделя 9 ответьте на вопросы 1–5 в рамках подготовки к обсуждению викторины в понедельник.Завершите остальные вопросы для обсуждения в классе в среду. Вопрос 1 Вопросы AC становятся

Дополнительная информация

Инструкция по эксплуатации

Инструкции по эксплуатации автомобильного петлевого детектора D-TEK Этот продукт является аксессуаром или частью системы. Всегда читайте и следуйте инструкциям производителя оборудования, к которому вы подключаете этот продукт

Дополнительная информация

Лабораторная работа E1: Введение в схемы.

E1.1 Лабораторная работа E1: Введение в схемы Цель этой лабораторной работы - познакомить вас с некоторыми основными приборами, используемыми в электрических цепях. Вы научитесь пользоваться блоком питания постоянного тока, цифровым мультиметром

. Дополнительная информация

1 Руководство по снижению номинальных значений температуры

VLT HVAC Drive FC 02 Примечания по применению Руководство по снижению номинальных значений температуры Руководство по снижению номинальных значений температуры. Резюме В этом документе представлены подробные данные о работе VLT HVAC Drive FC02 при различных температурах

Дополнительная информация

Характеристики и усилители BJT

Характеристики и усилители БЮТ Мэтью Беклер beck0778 @ umn.edu EE2002 Lab Section 003 2 апреля 2006 г. Резюме Как основной компонент в конструкции усилителя, свойства биполярного переходного транзистора

Дополнительная информация .

Как выбрать преобразователь частоты

Преобразователь частоты может помочь вам изменить 60 Гц на 50 Гц, а также может повысить напряжение с 110 В до 220 В с помощью внутреннего повышающего трансформатора, и наоборот. Перед покупкой преобразователя частоты лучше понять, с какими нагрузками он будет связан. Существует пять распространенных форм нагрузки: 1, резистивная нагрузка; 2, индуктивная нагрузка; 3, емкостная нагрузка: 4, выпрямительная нагрузка; 5 - регенеративная нагрузка; 6, смешанные загрузки. Подбирать мощность преобразователя частоты следует в соответствии с нагрузочной способностью и типом.

Выбор мощности преобразователя частоты

Преобразователи частоты серии

GoHz HZ-50 и HZ-60 не имеют особых требований к типам нагрузки, они могут использоваться для резистивных, индуктивных, емкостных, выпрямительных и смешанных нагрузок. Технические параметры проверены на основе стандартных условий номинальной резистивной нагрузки, преобразователь частоты может работать в течение длительного времени в этих условиях. Но, учитывая колебания напряжения в электросети, пусковой ток и факторы кратковременной перегрузки, мы должны сохранить соответствующий запас в выборе мощности преобразователя частоты.Вот несколько рекомендаций от производителей:

Активная нагрузка : допустимая мощность = 1,1 × допустимая мощность нагрузки.

RC нагрузка : Мощность = 1,1 × полная мощность нагрузки.

Нагрузка двигателя : Пусковой ток двигателя составляет прибл. В случае жесткого пуска (прямого пуска) в 5-7 раз больше номинального тока, время пуска обычно в пределах 2 секунд. Перегрузочная способность преобразователя частоты обычно составляет 200% в течение нескольких миллисекунд до срабатывания защиты от перегрузки.Поэтому, учитывая пусковую мощность, рекомендуется выбирать мощность преобразователя частоты, в 6 раз превышающую мощность двигателя, если двигатель запускается с трудом, то есть номинальный ток преобразователя должен быть выше пускового тока нагрузки. В противном случае лучше установить на двигатель устройство плавного пуска или частотно-регулируемый привод.

Нагрузка выпрямителя : входная цепь включает выпрямительный диод (или тиристор) и конденсаторы фильтра, если входная цепь не имеет устройства плавного пуска, нагрузка может рассматриваться как короткое замыкание во время замыкающего момента входного переключателя, которое будет генерировать сильный ударный ток, вызывающий срабатывание максимальной токовой защиты преобразователя частоты.Если часто возникает большой пусковой ток, это также влияет на цепь нагрузки. Следовательно, входная цепь нагрузки выпрямителя должна принимать меры плавного пуска для ограничения пускового тока.

Поскольку ток нагрузки выпрямителя является импульсным, пик-фактор тока составляет до 3–3,5 раз, поэтому он будет влиять на форму выходного напряжения в долгосрочной перспективе, это влияние зависит от пик-фактора тока нагрузки. Обычно, когда текущий пик-фактор> 2:00, выберите допустимую мощность преобразователя частоты по следующей формуле: Допустимая мощность = пик-фактор тока нагрузки / 2 × полная мощность нагрузки .

Рекуперативная нагрузка : например, реверсивный двигатель, нагрузки двигателя с регулируемой скоростью, во время реверсирования двигателя будет высокая обратная ЭДС, что может легко повредить преобразователь частоты, пожалуйста, укажите это перед заказом преобразователя частоты для таких нагрузок.

Смешанная нагрузка : учитывайте долю мощности каждой нагрузки, чтобы выбрать подходящий преобразователь частоты.

Напряжение и частота преобразователя частоты
Заводское значение входного напряжения по умолчанию: 220 В для однофазного, 380 В для трехфазного, 50 Гц или 60 Гц.Если вам необходимо изменить входное напряжение преобразователя частоты или у вас есть особые требования, укажите это при заказе.

Купить преобразователь частоты на ГГц, 1 кВА, 5 кВА ...

.

Выбор подходящего генератора для вашего микроконтроллера

  • Сетевые сайты:
    • Последний
    • Новости
    • Технические статьи
    • Последний
    • Проектов
    • Образование
    • Последний
    • Новости
    • Технические статьи
    • Обзор рынка
    • Образование
    • Последний
    • Новости
    • Мнение
    • Интервью
    • Особенности продукта
    • Исследования
    • Форумы
  • Авторизоваться
  • Присоединиться
    • Авторизоваться
    • Присоединиться к AAC
    • Или войдите с помощью

      • Facebook
      • Google
      • LinkedIn

0:00 / 0:00

    .

    Как выбрать частоту среза фильтра низких частот

    • Сетевые сайты:
      • Последний
      • Новости
      • Технические статьи
      • Последний
      • Проектов
      • Образование
      • Последний
      • Новости
      • Технические статьи
      • Обзор рынка
      • Образование
      • Последний
      • Новости
      • Мнение
      • Интервью
      • Особенности продукта
      • Исследования
      • Форумы
    • Авторизоваться
    • Присоединиться
      • Авторизоваться
      • Присоединиться к AAC
      • Или войдите с помощью

        • Facebook
        • Google
        • LinkedIn

    0:00 / 0:00

      .

      Как считывать значения резисторов

      1. Программирование
      2. Электроника
      3. Как считывать значения резисторов

      Часть электроники для детей Для чайников Шпаргалка

      Если вы думаете, что эти красочные полосы на ваших резисторах предназначены только для галочки подумай еще раз! Эти полосы говорят вам номинал резистора. Прежде чем вы сможете расшифровать номинал резистора, вам нужно немного больше узнать о резисторах.

      Существует два основных типа резисторов:

      • Стандартные резисторы имеют четыре цветных полосы.Три полосы говорят вам о номинальном значении , что означает значение, для которого резистор был разработан. Четвертая полоса сообщает вам допуск резистора, который указывает, насколько далеко от номинального значения может быть фактическое сопротивление. (Производственный процесс не идеален, поэтому большинство резисторов немного нестабильны.)

        Например, вы можете купить то, что, по вашему мнению, является резистором 100 Омега, но фактическое сопротивление, скорее всего, не точно равно 100 Ом. Это может быть 97 или 104 Омега, или какое-то другое значение, близкое к 100 Омега.Для большинства схем достаточно «закрыть».

      • Прецизионные резисторы , которые имеют более точные значения, чем стандартные резисторы, имеют пять цветных полос. Четыре полосы показывают номинальную стоимость. Пятая полоса говорит вам о толерантности.

        Вы можете рассчитывать на то, что фактическое сопротивление прецизионного резистора действительно близко к его номинальному значению. Итак, если вы покупаете прецизионный резистор 100 Омега, скорее всего, его фактическое значение находится в пределах 1 или 2 от 100 Омега.

      На следующем рисунке показана схема цветового кода стандартного (четырехполосного) резистора.Этот цветовой код используется для определения номинального значения и допуска стандартного резистора.

      Расшифровка номинала резистора

      Вот как вы используете цветовой код, чтобы вычислить номинальное значение резистора (см. Рисунок):

      1. Определите, какая полоса является первой.

        Сравните концы резистора. Обычно цветная полоса на одном конце ближе к этому концу, чем цветная полоса на другом конце.В этом случае полоса, ближайшая к одному концу резистора, является первой полосой.

        Если вы не можете определить, какая полоса первая, посмотрите на две внешние полосы. Если одна из внешних полос - серебряная или золотая, эта полоса, вероятно, последняя, ​​поэтому первая полоса находится на другом конце.

      2. Найдите цвет первой полосы в столбце «1-я цифра» и найдите номер, связанный с этим цветом.

        Это число является первой цифрой сопротивления.В резисторе, показанном на предыдущем рисунке, первая полоса желтого цвета, поэтому первая цифра - 4.

      3. Найдите цвет второй полосы в столбце «2-я цифра» и найдите номер, связанный с этим цветом.

        Это число является второй цифрой сопротивления. В резисторе, показанном на предыдущем рисунке, вторая полоса фиолетового цвета, поэтому вторая цифра равна 7.

      4. Найдите цвет третьей полосы в столбце, обозначенном «X», и найдите номер, связанный с этим цветом.

        Это число является множителем. В резисторе, показанном на предыдущем рисунке, третья полоса коричневая, поэтому множитель равен 10 1 (что составляет 10).

      5. Поместите первые две цифры рядом, чтобы получилось двузначное число.

        Для резистора, показанного на предыдущем рисунке, первые две цифры - 4 и 7, поэтому двузначное число - 47.

      6. Умножьте двузначное число на множитель.

        Это дает вам номинальное значение резистора в омах.В резисторе, показанном на предыдущем рисунке, двузначное число - 47, а множитель - 10, поэтому номинальное значение составляет

        .

      Простой способ умножить целое число на степень 10 (то есть 10 0 , 10 1 , 10 2 , 10 3 и т. Д.) - просто добавить ( что означает прибавку к концу) целое число с нулями и используйте показатель степени (который является маленьким выпуклым числом рядом с 10), чтобы сообщить вам, сколько нулей нужно добавить.Вот два примера:

      • 22 x 10 3 . Показатель степени равен 3, поэтому вы вставляете 3 нуля справа от 22, и вы получаете 22000. (Множитель в данном случае равен 10 3 , что составляет 1000).

      • 56 х 10 0 . Показатель степени равен 0, поэтому вы вставляете 0 нулей справа от 56, и вы получаете 37. (Множитель в данном случае равен 10 0 , что составляет 1, потому что любое число, возведенное в 0-ю степень, равно 1.)

      Если у вас есть прецизионный (пятиполосный) резистор (который вы вряд ли будете использовать для проектов в Electronics For Kids For Dummies ), третья полоса дает вам третью цифру сопротивления, а четвертая полоса дает вам множитель.

      Считывание допуска резистора

      Чтобы выяснить, насколько далеко от номинального значения может быть фактическое сопротивление, вы посмотрите на четвертую полосу стандартного резистора (или пятую полосу на прецизионном резисторе). Цветовой код допусков резистора указан на предыдущем рисунке.

      Скажите, что четвертая полоса резистора 470 Omega, который вы выбрали для конкретного проекта, - это золото. Золотой цвет в столбце «Допуск» на рисунке соответствует допуску в 5 процентов.Поскольку 5 процентов от 470 составляет 23,5, фактическое сопротивление может быть на 23,5 Омега, больше или меньше , чем 470 Омега. Таким образом, фактическое значение сопротивления может быть любым от 446,5 до 493,5 Ом.

      Большинство стандартных резисторов имеют допуски 5%, 10% или 20%, а большинство прецизионных резисторов имеют допуски 1% или 2%. Для большинства схем - и во всех проектах из Electronics For Kids For Dummies - можно использовать стандартный резистор. Для определенных схем важно использовать прецизионный резистор с меньшим допуском.

      На следующем рисунке показаны еще два примера резисторов и их номиналы.

      Вы можете измерить фактическое значение определенного резистора с помощью прибора, называемого мультиметром . Например, когда вы используете мультиметр для измерения резистора 470 Омега с допуском 5 процентов, вы можете обнаружить, что фактическое значение составляет 481 Омега.

      Об авторе книги

      Кэтлин Шейми - инженер-электрик и писатель в области высоких технологий с обширным инженерным и консультационным опытом в области медицинской электроники, обработки речи и телекоммуникаций.

      .

      Смотрите также