Как шлифуют шейки коленвала


Шлифовка коленвала – причины и технология ремонта

Как бы не боролись инженеры и конструкторы с силой трения, она пока является единственным фактором, приводящим к износу деталей. Именно из-за износа рабочей поверхности многочисленных подшипников скольжения многие автолюбители начинают изучать, как происходит шлифовка коленвала.

Учитывая, что процедура эта чрезвычайно сложна и ответственна, проводить её могут специально подготовленные работники при наличии соответствующего токарного оборудования. Водителю остаётся лишь усвоить причины, по которым приходится проводить обработку коленчатого вала, принимать меры к тому, чтобы за ремонтом двигателя приходилось обращаться как можно реже.

Для чего производится шлифовка коленвала

Шлифовка коленвала ГАЗ

Коленчатый вал – это сложная по конфигурации деталь, которая преобразует возвратно-поступательные движения поршней в крутящий момент. Проще говоря, благодаря коленвалу автомобиль получает возможность ехать. Без этой детали не может работать ни один мотор.

  • В блоке мотора коленвал закреплён в нижней части на пяти (и более) коренных подшипниках, количество шатунных подшипников соответствует количеству цилиндров.
  • Шатуны, связанные с поршнями также прикрепляются к эксцентрическим шейкам с помощью подшипников скольжения.
  • Коренные и шатунные подшипники – вот зона повышенного внимания автовладельца. Для того, чтобы подшипники выполняли свою работу, по скрытой системе смазки к ним подаются масло.
  • С течением времени происходит износ вкладышей и шеек, давление масла падает, мотор выходит из строя.

Вот для того, чтобы вернуть двигатель к жизни, но при этом не покупать новые детали, используется шлифовка коленвала.

Конструкция коренных и шатунных подшипников скольжения коленвала предполагает использование сменных вкладышей из специального сплава. Если износ достигает определенных пределов, следует разобрать мотор и установить новые вкладыши, которые будут чуть толще, чем, те, которые были установлены первоначально. Диаметр шеек, хотя и уменьшен из-за износа, но всё же, не позволяет установить сразу коленвал на новые вкладыши.

Следует сточить наружную поверхность шейки до такого диаметра, который позволит установить его с новыми ремонтными вкладышами. Процесс подгонки диаметра коренных и шатунных шеек под новые вкладыши и называется – шлифовкой коленвала. Изменение диаметра происходит на сотые и десятые доли миллиметра, а количество шлифовок ограничено количеством ремонтных размеров вкладышей.

Как шлифуют коленвал?

Шлифовка шатунных шеек коленвала

Хотя отечественные автомобили предоставляют владельцам неограниченные возможности при проведении самостоятельного ремонта, есть процедуры, которые физически невозможно выполнить в условиях даже хорошо оборудованного гаража. Так и шлифовка коленвала своими руками в условиях гаража невозможна, так как для этого необходимо сложное высокоточное токарное оборудование.

Кроме этого работник, выполняющий шлифовку должен пройти соответствующее обучение, а для качественного выполнения задания обладать достаточным опытом. Автовладелец в данном случае без дела не останется, так как ему следует выполнить следующие процедуры:

  • снять с двигателя всё навесное оборудование, включая коробку передач и сцепление с маховиком;
  • извлечь двигатель из моторного отсека;
  • вскрыв поддон мотора, открутить крышки коренных и шатунных подшипников;
  • снять крышки с вкладышами и извлечь коленвал;
  • очищенный коленвал передают в руки токарю.

Для шлифовки используют специальный станок, который позволяет изменять ось вращения. Шлифовку начинают либо с шатунных шеек, либо с самых изношенных коренных. Измеряя максимально изношенную шейку можно определить размер, до которого придётся производить расточку. После балансировки и выстраивания шеек строго по оси вращения, наружная поверхность шеек протачивается до необходимого размера. После обработки коленвал обязательно вымывают, особенно смазочные каналы. Это участок работы, который вполне можно назвать шлифовкой коленвала своими руками.

Как можно продлить жизнь коленвалу?

Автовладельцы, которым приходилось на собственном опыте познать, как шлифуют коленвал, знают, насколько дорогостоящей может быть эта операция. Кроме того, приходится полностью разбирать мотор, что влечёт за собой дополнительные финансовые затраты. Даже при условии срочности ремонта, машина несколько дней ездить не будет, а в последующий обкаточный период должна эксплуатироваться очень осторожно. Для того, чтобы не вовлекаться в столь сложные ремонтные работы можно выбрать два пути: каждый раз покупать новый автомобиль, когда износ коленвала подходит к граничным пределам либо бережно эксплуатировать машину.

Во многом срок эксплуатации мотора зависит от самого водителя. Для того, чтобы как можно дольше не обращаться за помощью специалистов, следует выполнять простые  правила:

  • бережно эксплуатировать машину, не допуская перегрева или работы на повышенных нагрузках;
  • своевременно менять моторное масло и фильтры, при этом заливать только такое, которое рекомендовано производителем автомобиля;
  • очень осторожно относиться к вопросу использования всевозможных присадок к маслу;
  • любой ремонт, связанный с проникновением в полость мотора доверять только квалифицированным сотрудникам.

Контролировать состояние коленвала можно по известным признакам, к которым относят давление в системе смазки и состояние моторного масла. Заботливый автовладелец за время эксплуатации авто может и не столкнуться с подобным видом ремонта двигателя.

шлифовка коленвала

Эта статья о шлифовке коленвала будет полезна не только автовладельцам, но и владельцам мотоциклов с коленчатыми валами на подшипниках скольжения.

Шлифовка коленчатого вала (а точнее его шеек, как коренных, так и шатунных) может потребоваться после определённого пробега любого двигателя и она позволяет восстановить правильную и нужную геометрию изношенных шеек коленчатого вала, как шатунных, так и коренных. В этой статье мы рассмотрим для чего нужна такая операция как шлифовка коленчатого вала, как она производится и когда необходимо шлифовать шейки коленвала, а так же другие нюансы по восстановлению коленчатого вала.

Разумеется те автовладельцы, которые имеют поблизости грамотную мастерскую, могут просто отдать свой автомобиль на ремонт автомеханикам. Тем более, что для осуществления шлифовки коленчатого вала требуется специальный шлифовальный станок. Ну а тем водителям кто живёт в глубинке и не имеет ремонтной мастерской поблизости, можно будет благодаря этой статье самостоятельно снять коленчатый вал и произвести его дефектовку.

Ну и после шлифовки коленвала на каком то заводе, они смогут проконтролировать размеры самостоятельно и собрать мотор с новыми вкладышами. Впрочем и водителям имеющим поблизости автосервис (или начинающим авторемонтникам), надеюсь эта статья будет полезна.

О восстановлении коленчатых валов (кривошипов), имеющих подшипники качения, вместо подшипников скольжения (вкладышей), я уже писал и желающие могут почитать об этом вот тут. А в этой статье мы рассмотрим как восстанавливают с помощью шлифовки шейки коленчатого вала, которые рассчитаны на подшипники скольжения.

Необходимость шлифовки шеек коленвала возникает от постепенного их износа, от которого коренные и шатунные шейки становятся овальными и их диаметр становится немного меньше, и вкладышей тоже. От этого зазоры в подшипниках скольжения увеличиваются и давление масла падает ниже необходимой нормы (как проверить точное давление масла читаем тут). Также давление масла падает и от износа распределительного вала и его постелей (о ремонте постелей распредвала описано вот тут).

Следует учесть, что падение давления масла может быть и от износа масляного насоса, или от износа сопряжения редукционного клапана и это следует учитывать и сначала устранить неисправности в них, перед тем как разбирать двигатель и вынимать коленчатый вал для шлифовки.

Кроме падения давления масла, ещё от износа шеек и вкладышей возникают стуки и ударные нагрузки при работе двигателя, так как зазоры между изношенными шейками и вкладышами увеличены больше нормы (нормы зазоров будут описаны ниже). Обычно стук шатунных подшипников резче стука коренных и он прослушивается на холостых оборотах мотора — при резкой подаче газа. А подшипник какого шатуна стучит, легко определить, если поочерёдно отключать свечи зажигания (или форсунки на дизельном двигателе).

Стук коренных подшипников коленвала обычно глухого тона, металлический. Тоже обнаруживается при резкой подаче газа на холостом ходу. Частота стука увеличивается с повышением оборотов коленвала. Чрезмерный осевой зазор коленвала вызывает более резкий стук с неравномерными промежутками, которые особо заметны при плавном увеличении (или уменьшении) оборотов двигателя.

Разумеется ездить с изношенным (застучавшим) коленвалом нельзя и при появлении стуков или при падении давления масла (ну или при проведении планового капитального ремонта двигателя) следует ремонтировать коленчатый вал с помощью шлифовки и подбора новых вкладышей, что и будет описано ниже.

Проверка геометрии шеек перед шлифовкой коленвала.

Разобрав двигатель (подробно о разборке мотора вот тут) и вынув коленчатый вал, его следует внимательно осмотреть. Трещины в любом месте коленвала недопустимы, а на поверхностях, которые облегают кромки сальников, не должно быть забоин, царапин или рисок.

Ниже будут описаны проверка и допуски для исправного коленвала и разумеется у изношенного коленвала (с изношенными шейками) биение будет больше, чем описано ниже, так как шейки как правило изнашиваются в виде овала и это значит следует произвести шлифовку коленвала.

Но нормы допусков следует знать и стремиться к ним. К тому же знание допусков на биение и методы проверки, поможет любому автовладельцу проконтролировать коленвал после того, как они заберут его из шлифовального цеха.

 

 

 

Осмотрев коленвал и убедившись в отсутствии дефектов, описанных выше, устанавливаем его на две призмы (крайними коренными шейками — см. фото слева) и с помощью индикатора часового типа (выставив индикатор на ноль и прикладывая носик индикатора к поверхностям шеек) проверяем биение — допустимые биения показаны на рисунке 1 ниже.

 

 

  • Биение посадочной поверхности под ведущую шестерню масляного насоса и биение коренных шеек коленвала не должно превышать 0,03 мм (чем меньше, тем лучше).
  • Биение посадочной поверхности под маховик не должно превышать 0,04 мм (чем меньше, тем лучше).
  • Биение посадочной поверхности под шкивы и поверхностей, по которым трутся кромки сальников не должно превышать 0,05 мм.

Далее измеряем с помощью микрометра диаметры коренных и шатунных шеек коленвала (измеряем микрометром крест-накрест, чтобы выявить и овальность). Шейки коленвала следует шлифовать, если их износ более 0,03 мм, или овальность более 0,03 мм., а также если на шейках имеются риски или задиры.

Шлифуем шейки коленвала с уменьшением диаметра разумеется до ближайшего ремонтного размера (смотрим ремонтные размеры на рисунке 2, на примере коленвала ВАЗ 2108, 09). Ведь предусмотрена возможность перешлифовки шеек коленвала с уменьшением диаметра на 0,25; 0,5; 0,75;, 1 мм — это на большинстве двигателей, как отечественных, так и иномарок.

Так как ремонтные вкладыши изготавливают увеличенной толщины, под шейки коленвала, которые шлифованы и уменьшены по диаметру на 0,25; 0,5; 0,75; и 1 мм.

При шлифовании добиваемся выдерживания размеров до ближайшего ремонтного размера (уменьшенного диаметра шейки на 0,25 мм). При этом овальность и конусность коренных и шатунных шеек после шлифовки коленвала не должны превышать 0,005 мм. Это конечно же зависит от точности шлифовального станка, но эти допуски на конусность и овальность шеек следует учитывать при обработке, иначе смысла ремонта не будет.

А смещение осей шатунных шеек от плоскости, проходящей через оси шатунных и коренных шеек, после их шлифовки должны быть в пределах ±0,35 мм — см. рисунок 1. Для проверки устанавливаем коленвал крайними коренными шейками на две призмы и выставляем коленвал так, чтобы ось шатунной шейки первого цилиндра находилась в горизонтальной плоскости, проходящей через оси коренных шеек.

Далее индикатором проверяем смещение в вертикальном направлении шатунных шеек второго, третьего и четвёртого цилиндров, относительно шатунной шейки первого цилиндра.

Шлифовка коленвала — сам процесс.

Разумеется для шлифовки шеек необходим специальный круглошлифовальный станок, который имеется в специализированных мастерских. Технологию шлифовки шеек коленвала нет смысла описывать, так как сам процесс более понятен на видео чуть ниже. Перед шлифовкой самое ответственное — это выставить коленвал правильно, постукивая по нему и проверяя индикатором.

При шлифовании главное — это выдерживание размеров галтелей шеек (на примере вазовского коленвала на рисунке 2 ниже), чтобы получить правильный рабочий зазор между шейками и ремонтными вкладышами. Ну и разумеется не выйти за пределы допусков по овальности, конусности и смещения шеек, которые были описаны выше.

Прошлифовав шейки, следует отполировать их с помощью алмазной пасты (или пасты ГОИ). После шлифовки и последующей доводки шеек полировкой, следует удалить заглушки масляных каналов коленвала, а затем тщательно промыть каналы коленвал керосином, для удаления остатков абразива и продуктов износа вкладышей и шеек (подробнее о промывке каналов коленвала читаем здесь).

После промывки продуваем каналы сжатым воздухом и запрессовываем новые заглушки с помощью специальной оправки № А86010 (перед запрессовкой новых заглушек, желательно обработать их гнёзда специальной фрезой или зенковкой, чтобы удалить следы от кернера, разумеется это делаем ещё до промывки и продувки коленвала). После запрессовки новых заглушек следует закернить кернером каждую заглушку в трёх точках.

Ну и ещё желательно промаркировать на первой щеке коленвала величину уменьшения диаметра коренных и шатунных шеек после шлифовки коленвала (например 0,25; 0,50).

Вкладыши. Как было сказано выше, ремонтные вкладыши изготавливают увеличенной толщины, под шейки коленвала, которые шлифованы и уменьшены по диаметру на 0,25; 0,5; 0,75; и 1 мм.

На вкладышах нельзя производить никаких подгоночных работ. Зазор между вкладышами и шейками коленвала проверяют расчётом, перед этим промерив детали микрометром. Для проверки зазора гораздо проще пользоваться специальной калиброванной пластиковой проволокой (наподобие рыболовной лески).

Для этого хорошенько очищаем рабочие поверхности шеек и вкладышей и укладываем кусочек проволоки на поверхность шейки коленвала (чтобы не падала приклеиваем капелькой Литола) и затем устанавливаем на шейку шатун с крышкой (или крышку коренного подшипника) и стягиваем их болты с помощью динамометрического ключа. Гайки шатунных болтов затягиваем моментом 5,2 кгс•м (51Н•м), а болты крепления крышек коренных подшипников затягивам моментом 8,2 кгс•м (80,4Н•м).

Далее снимаем крышку и по шкале (см- рисунок 3, шкала нанесена на упаковку проволоки) и по сплющиванию проволоки определяем величину зазора между вкладышем и шейкой коленвала.

Номинальный расчётный зазор для шатунных шеек составляет 0,02 — 0,07 мм., и для коренных шеек составляет 0,026 — 0,073 мм. А если зазор меньше предельно допустимого (0,1 мм для шатунных и 0,15 мм для коренных) то можно снова использовать эти вкладыши, разумеется если шейки не шлифовались до ремонтного размера. Но всё же лучше использовать новые вкладыши (особенно если на хоженных вкладышах имеются риски и царапины).

Ну и если шейки коленвала изношены и шлифуются до ближайшего ремонтного размера, то разумеется вкладыши меняем на новые ремонтные, которые имеют увеличенную на 0,25 мм толщину.

Упорные полукольца. На этих кольцах так же как и на вкладышах нельзя производить никаких подгоночных работ. А при задирах, рисках или отслоениях меняем кольца на новые. Также следует заменить полукольца новыми ремонтными (увеличенной толщины) если осевой зазор коленвала превышает максимально допустимый 0,35 мм.

Новые ремонтные полукольца как правило увеличенной на 0,127 мм. толщины и их подбираем такой толщины, чтобы получить рабочий осевой зазор в пределах 0,06 — 0,26 мм (чем меньше, тем лучше).

После шлифовки коленвала, прежде чем установить его на своё место с новыми ремонтными вкладышами, коленчатый вал и все его масляные каналы и полости следует обязательно тщательно отмыть сначала бензином, а потом керосином, чтобы вымыть все остатки от шлифовки (абразив и металлическую пыль). Подробно об этом можно почитать вот тут.

После промывки и установки коленвала на своё место с новыми (ремонтными) вкладышами, затягиваем крышки шатунов и крышки коренных подшипников с требуемым моментом, который был указан выше. Ну и собираем двигатель в последовательности обратной разборке.

Вот вроде бы и всё о шлифовке коленвала и нюансах с ней связанных, успехов всем.

Технология шлифовки шеек коленчатого вала. Ремонт коленчатых валов.

Во время работы коленвала за период срока эксплуатации существует вероятность возникновения внутренних напряжений за счет старения металла, за счет постоянно действующих на него крутящих и изгибающих моментов, меняющейся температуры среды, при работе коленвала в условиях масляного голодания. Перед шлифовкой необходима проверка вала на изгиб и правка (рихтовка) вала, если прогиб больше предельно допустимого.

Также осуществляется проверка на изгиб носка коленвала и поверхности под сальник. Проверяется состояние поверхности под упорные полукольца. На некоторых иномарках упорные полукольца могут иметь ремонтный размер. Проверяется состояние подшипника первичного вала. В случае износа осуществляется замена.

Рекомендуется замена заглушек, чистка и мойка коленчатого вала перед шлифованием, и балансировка после шлифования.

После всех операций производится повторная проверка коленвала.

Качество шлифования коленчатого вала зависит от многих факторов. Некоторые из них могут показаться на первый взгляд несущественными: правильности установки станка, состояния станка, качества его наладки, состояния патронов, выбора зернистости и связки шлифовального круга, правильного выбора правящего инструмента (алмазного карандаша) для круга, выбора режимов правки круга, выбора режимов резания, выбора усилия поджима центра, выбора смазочно-охлаждающей жидкости (СОЖ), ее концентрации и т.д.

Шлифование шатунных шеек

Шлифование всех поверхностей любого вала, расположенных по оси его вращения, должно выполняться только в центрах. Если при шлифовании опорных или коренных шеек  коленчатого вала двигателя легкового автомобиля для его установки на шлифовальном станке используются кулачковые патроны - это гарантирует 100%-ный брак. Во-первых, при сжатии патронами возникает предварительная деформация, в случае чего после шлифования опорных шеек и снятия со станка будет иметь недопустимое биение шеек (чем тоньше вал, тем оно больше). Во-вторых, применение патронов требует специального выставления вала в станке, т.е. обеспечения минимального биения поверхностей вала, расположенных от патронов. Практика показывает, что в патронах сделать, не так просто, в то время как в центрах легко обеспечить биение у краев вала менее 0,015-0,020 мм. Как исключение в некоторых случаях допускается установка вала с одной стороны в патроне, а с другой - в центре.

Шатунные шейки шлифуются в специализированных станках для шлифования коленчатых валов. Такие станки имеют центросместительные приспособления с патронами, позволяющие сместить ось коренных шеек от оси вращения вала в станке так, чтобы эта ось вращения совпала с поверхностью обрабатываемой шатунной шейки. При шлифовании шатунных шеек наиболее важно обеспечить параллельность их осей относительно коленчатого вала коренных шеек. Максимально допустимой не параллельностью следует считать величину 0,1 мм на 1 м. В этом случае  длина шатунной шейки 25 мм не параллельность составит 0,0025. Не параллельность шатунных и коренных шеек определяет-с одной стороны, типом станка и его техническим состоянием с другой - квалификацией специалиста-шлифовщика. У многих коленчатых валов двигателей иностранных автопроизводителей ширина шеек мала (20-22 мм), что требует применять­ на станках достаточно узких шлифовальных кругов. При балансировании не допускается касание кругом торцевых поверхностей (щек) коленчатого вала. Надо стремиться к тому, чтобы не повредить галтели - поверхности перехода от шейки. На тех валах, где нет канавок для выхода шлифовального круга, круг должен иметь радиусы не меньше, ' галтелей. Этими требованиями пренебрегать не следует, поскольку любое повреждение галтелей может привести к  разрушению. Наибольшую точность дает шлифование в неподвижных центрах есть постоянным. Привод вала обеспечивается специальным поводком. Не все специализированные станки для шлифования коленчатых валов, имеются на отечественных ремонтных предприятиях, обеспечивающие  такие условия, поэтому для коренных шеек можно обеспечить шлифование универсальным кругло - шлифовальным станком. Сжатый центрами коленчатый вал деформируется, чем он тоньше, тем больше усилие сжатия. Усилие сжатия не должно быть большим во избежание недопустимого биения коренных шеек. Проверить или подобрать усилие можно предварительным шлифованием коренных шеек и последующей проверкой биения на призмах или в центрах без усилия прижатия.

Данный вопрос имеет очень важное значение для обеспечения необходимого качества ремонта. В практике ремонта нередки случаи, когда после "неграмотного" шлифования в центрах длинные и тонкие валы имели биение коренных шеек на призмах 0,10-0,15 мм, а по­сле аналогичного шлифования в патронах - даже до 0,4-0,5 мм. Это даже больше, чем обычно бывает после расплавле­ния подшипников, обрыва шатуна и т.д.

Альтернативным способом шлифования коренных шеек является шлифование с одним центром. При этом хвостовик вала устанавливается в неподвижный центр, а вал зажимает­ся в патроне по поверхности заднего сальника. Зажатие одной из поверхностей вала в патроне требует очень точного его выставления по минимальному биению этой поверхности (не более 0,02-0,03 мм). При этом опора с другой стороны на центр обеспечивает отсутствие деформации вала, что всегда имеет место, если обе стороны вала зажаты в патронах

Для шлифования коренных шеек необходимы различные центры, включая укороченные для коротких центровых отвер­стий. Очень большое значение имеет состояние центровых фасок на самом валу.

Рисунок 3.3.17 - Технологическая втулка, устанавливаемая на хвостовик  для шлифования вала

После шлифования коренных шеек и торцевых (упорных) поверхностей могут быть прошлифованы, если необходимо, хвостовик (если он наварен) и поверхности под сальники. Для деформированных валов это обязательно, для недеформированных следует ориентироваться на состояние и биения соответствующих поверхностей. Обычно биение более 0,02 мм требует обработки поверхностей под сальники. Это не значит, что надо шлифовать эти поверхности до тех пор, пока не ис­чезнут все круговые риски.

После шлифования шеек вала их необходимо полировать. Поверхности шеек после шлифования не имеют, как правило, необходимого качества поверхности, а это дает повышенный износ вкладышей или втулок подшипников в процессе первоначальной приработки. Кроме того, смазочные отверстия, выходящие на поверхность шейки, после шлифования обычно имеют острые края и могут повредить мягкий материал вкладышей.

Рисунок 3.3.18 - Приспособления для полирования (доводки) шеек валов:

а—простейшие ручные; в — с электроприводом: 1 — войлочное. 2— шейка вала; 3 — башмак; 4 — абразивное полотно; 5 — ролик; 5—кронштейн; 7 — шарнир; 8 — электродвигатель

Один из простейших вариантов такого приспособления представляет собой специ­альные щипцы с длинными ручками и узкими (шириной 20 мм) деревянными башмаками, на внутреннюю радиусную поверхность которых наклеен толстый (5-10 мм) слой войлока. Абразивное полотно смазывается маслом и зажимается щипцами между войлоком и шейкой вала, после чего вращением вала в течение нескольких минут осуществляется доводка шейки.

Для доводки валов с диаметрами шеек от 40 до 70 мм достаточно 4-5 комплектов башмаков различного радиуса, т.к. толстый слой войлока на башмаке обеспечивает хорошее прилегание к шейке в некотором диапазоне её диаметров. При доводке шеек необходимо обеспечить минимальный съем (несколько микрон). Качество доводки поверхности легко проверяется с помощью кусочка меди если провести им по хорошо отполированной шейке, то на ее поверхности не должно остаться следа.

Ремонт любого вала должен заканчиваться контролем всех размеров и биений, причем этот контроль необходимо проводить с особой тщательностью. Неполный (или недобросовестный) контроль отремонтированного вала может значительно снизить качество ремонта всего двигателя в целом. Измерения вала при окончательном контроле выполняются аналогично описанным выше операциям по его дефектации.

Коленчатый вал: как будем ремонтировать? ч. 2 / Ремонт двигателей

В предыдущей статье мы рассмотрели подготовительный этап работы, предшествующий шлифовке коленчатого вала. Он включает в себя проверку шлифовального станка и вала. Только после этих операций можно приступить к шлифовке.

На первый взгляд может показаться, что шлифовка коленчатого вала больших трудностей не представляет - был бы только станок. К сожалению, такого, мягко говоря, упрощенного взгляда придерживаются не только механики-мотористы, но некоторая часть шлифовщиков. И ведет это к ошибкам при ремонте, а то и просто к преднамеренной халтуре. В результате чего и появляются неизвестно где, кем и как отремонтированные коленвалы и двигатели, которые «не ходят».

Между тем шлифовка коленвала - процесс тонкий, требует аккуратности, опыта и знания не только технологии обработки, но и условий работы вала в моторе, а также умения «чувствовать» металл. В общем, работа мастера, шлифующего иной «сложный» коленчатый вал, - не только ремесло, но и искусство. И уж никак не рутинный поточный процесс, когда о качестве должен думать кто-то другой и лишь в самую последнюю очередь, когда заказчик предъявляет претензии.

С чего все-таки начнем?

Шлифовать коленчатый вал начнем...нет, сначала думать надо. Потому как первый вопрос возникает сам собой: какие шейки шлифовать в первую очередь - шатунные или коренные?

Быть может, кому-то покажется странным, но этот вопрос имеет принципиальное значение. Дело в том, что слабое место любого коленчатого вала - это шатунные шейки, включая галтели («переходы» от шейки к щекам-противовесам). Так вот, после шлифования шатунных шеек внутренние напряжения в их поверхностном слое могут резко изменять свое значение. А это, очевидно, явится причиной деформации всего вала. И если коренные шейки «сделаны» раньше шатунных, то вал в той или иной степени «поведет» - ось коренных шеек изогнется, а сами шейки получат взаимное биение, причем далеко не всегда деформация и биение будут малыми.

Наиболее подвержены деформации «нежесткие» валы - с шатунными шейками малого диаметра, не имеющие «полных» (с двух сторон шатунной шейки) противовесов. Такие валы установлены в ряде двигателей Volvo, Chrysler, Mercedes, Lincoln, а также многих японских фирм. Попытки шлифовать такие валы «наоборот» (сначала коренные, затем - шатунные шейки) часто заканчиваются неудачей - не только повышенным биением, но и эллипсностью шеек.

Однако не всегда начинать шлифовать вал надо с шатунных шеек. При шлифовке шатунных шеек вал устанавливается в патронах станка. Но если поверхности вала, зажимаемые кулачками, некондиционные (к примеру, хвостовик вала восстановлен наваркой металла), то вначале потребуется шлифовка этих поверхностей, и лишь затем - шатунных шеек. В противном случае будет «потеряна» база, от которой шлифуют шатунные шейки, и они окажутся непараллельны коренным.

Еще одна проблема, которую нередко упускают из виду, а чаще просто игнорируют некоторые шлифовщики, - это радиус галтелей шеек. На практике известно немало случаев, когда коленчатые валы с подрезанными галтелями ломались в результате значительного снижения прочности (концентрации напряжений в подрезанных галтелях).

Исключить подрез можно, если «заправить» на краях шлифловального круга радиусы, соответствующие радиусам галтелей. Такая операция необходима для тех валов, у которых на краях шеек нет канавок для выхода шлифовального круга. Но и там, где такие канавки есть, аккуратность тоже не помешает.

Анализ излома разрушенных коленчатых валов показывает, что трещина обычно начинает развиваться от места перехода шлифованной поверхности к не тронутой шлифовальным кругом. А такое место обычно и приходится на галтель, приобретающую после неквалифицированного ремонта вала неправильную форму. Особенно опасна недооценка получающейся при ремонте формы галтелей для коленчатых валов современных высокофорсированных двигателей.

Осторожно, шатунные шейки!

Если подготовка к работе завершена, можно приступать к шлифованию шатунных шеек. Для этого вал устанавливается в патроны станка так, чтобы его ось вращения проходила через одну из шатунных шеек.

Но шлифовать пока все равно рано. Посмотрите: смещенный вал, вращаясь вокруг оси одной из шатунных шеек, явно несбалансирован. Такой большой дисбаланс при вращении обязательно приведет к деформации самого вала и элементов станка, в результате чего качество шлифовки резко снизится - исказится форма шейки (появится эллипс), ее ось окажется непараллельной оси коренных шеек.

Исключить или, по крайней мере, значительно уменьшить дисбаланс вала позволяют специальные грузы, закрепляемые на планшайбах напротив патронов станка. Масса и расположение балансировочных грузов подбирается в зависимости от массы вала и радиуса кривошипа.

Все? Еще нет. Теперь надо точно выверить положение вала, чтобы ось его вращения совпала с осью обрабатываемой шейки. Это нетрудно сделать с помощью стойки с индикатором. Правда, только для малоизношенных шеек - в случае сильного задира шейка приобретает неправильную форму, и точная установка вала может потребовать заметно большего времени.

После такой выверки многие шлифовщики и начинают собственно шлифовку шейки. И - пропускают один весьма важный момент. Дело в том, что большинство коленчатых валов (к примеру, 4-х и 6-цилиндровых двигателей) имеют «парные» шатунные шейки, лежащие на одной оси. Если при шлифовке учесть и это условие, то выверка вала на предмет совпадения осей парных шеек в станке сильно усложнится. Но вполне оправдает себя - после шлифовки будет достигнуто наивысшее качество ремонта.

Добиваться совпадения осей «парных» шеек целесообразно не только из чисто геометрических соображений: совпадение осей - это и одинаковый угол опережения зажигания, и такой же ход поршня во всех цилиндрах.

Однако на практике обеспечить это условие удается далеко не всегда - некоторые валы после длительной эксплуатации оказываются «скрученными», т.е. их шатунные шейки получают слишком большое угловое смещение и уже не «попадают» в одну ось даже при шлифовке через ремонтный размер. Отметим, что ошибка при наладке станка, при которой патроны получаются несоосны, тоже не позволит шлифовать «парные» шейки в одной оси.

Итак, только теперь можем начинать шлифовку. Включаем вращение вала, подачу СОЖ (смазывающе-охлаждающей жидкости), подводим шлифовальный круг до касания шейки. Далее следует сделать подачу в пределах 0,05 мм «на врезание», короткую остановку и снова подачу. И так до заданного размера шейки, разумеется, с промежуточным контролем получающегося размера.

«Нежесткие» валы требуют при шлифовке еще более осторожного обращения. К примеру, подачу на врезание следует ограничить величиной 0,03 мм, а перерыв между подачами увеличить (сделать так называемое «выхаживание») - в противном случае шейка окажется с недопустимой эллипсностью (более 0,01 мм).

В общем случае ширина шлифовального круга всегда меньше ширины шейки. Чтобы обеспечить обработку шейки по всей ширине, ее надо, как говорят шлифовщики, «разогнать», т.е. подать круг по оси шейки до легкого касания щек. Эта операция должна выполняться с максимальной осторожностью - при врезании в щеки (противовесы) вал начинает вибрировать, что может привести к появлению глубокой «огранки» на поверхности шейки. Для «нежестких» валов это критично, поскольку появившуюся огранку практически не удается исправить, даже имея припуск в 0,1 мм.

А теперь - коренные!

Главный вопрос, который необходимо решить перед шлифовкой коренных шеек, - каким способом закреплять (устанавливать) вал в станке.

Многолетняя практика шлифования коленчатых валов большого числа различных двигателей позволяет указать оптимальный способ установки вала. Но прежде рассмотрим варианты.

Некоторые шлифовщики зажимают вал в патронах точно так же, как и при шлифовке шатунных шеек, только патроны сводят к оси вращения планшайб станка. Считается, что при хорошей выверке положения вала по минимальному биению хвостовика (или 1-й коренной шейки) и поверхности заднего сальника (или последней коренной шейки) шейки можно шлифовать и таким способом.

В действительности есть ряд причин, по которым так устанавливать вал нельзя. Главное, что в первую очередь характерно для «нежестких» валов - это деформация вала при сжатии его в кулачках патронов.

Еще один неприятный момент - планшайбы при смещении патронов к центру невозможно сбалансировать. А тогда вал и элементы станка при вращении будут деформироваться, в результате чего коренные шейки окажутся некруглыми. И, наконец, зажимая вал за хвостовик и поверхность заднего сальника, очень трудно контролировать биение этих поверхностей (коренные шейки могут иметь свое биение, если когда-то вал был неправильно отремонтирован).

Правда, описанный способ проще: он не требует демонтажа планшайб с патронами (это не слишком приятная и легкая процедура), но такое «слабое» его преимущество меркнет перед серьезными недостатками.

Редко, но встречается и такой способ установки: хвостовик - в центр передней бабки станка, а поверхность заднего сальника - в патрон. Или, наоборот, центр ставят в заднюю бабку. Но суть от этого не меняется, поскольку все недостатки останутся, ну, может быть, их негативное влияние на качество шлифовки будет чуть меньше.

Свободен от указанных недостатков только один способ - установка вала в центрах. При этом задний центр должен обязательно быть неподвижен (он фиксируется с помощью стопора), иначе из-за проскальзывания в центровой фаске вал будет вращаться неравномерно, и шейки после шлифовки опять получатся некруглыми.

Шлифовка в центрах, очевидно, предполагает, что планшайбы с патронами необходимо заменять на центры. Поскольку это требует времени, во многих мастерских для ремонта коленчатых валов используют два станка - один только для шатунных шеек (с планшайбами и патронами), другой - только для коренных (с центрами). Тем самым экономится время.

Очень важно, чтобы усилие сжатия вала центрами было минимальным, в противном случае вал в станке деформируется. Если затем коренные шейки прошлифовать, то после снятия со станка вал разогнется и сразу окажется кривым.

Разумеется, при установке вала в центрах необходимо контролировать биение различных поверхностей (хвостовик, шейки, задний сальник). Повышенное биение может свидетельствовать не только о необходимости правки центровых фасок, но и о повреждении или износе посадочной поверхности центров в станке.

Отметим также, что для задней части вала нередко приходится использовать различные центры, в том числе укороченные, причем перед установкой вала в станок требуется выпрессовывать подшипник опоры первичного вала КПП, чтобы он не мешал центру (для этого применяются специальные цанги с обратным молотком). Кроме того, очень важна правильная геометрия центровых фасок вала - попытки некоторых шлифовщиков поправить фаски вручную с помощью шабера (такое встречается) обычно дают повышенную эллипсность коренных шеек.

Сама шлифовка коренных шеек выполняется аналогично шатунным. Начинают обычно с шеек, имеющих максимальный износ (средняя или первая), чтобы сразу определить, в какой ремонтный размер выйдут коренные шейки. При этом не следует забывать про торцевые поверхности упорного подшипника - у некоторых двигателей с фланцевым коренным вкладышем ремонтное уменьшение коренных шеек сопровождается одновременным увеличением ширины между фланцами, что требует расшлифовки соответствующих поверхностей на валу.

В заключительной стадии работы неплохо чуть тронуть поверхность переднего и заднего сальников - это повысит надежность уплотнений вала. И, конечно же, необходимо тщательно проконтролировать всю геометрию вала - без выходного контроля работа не может считаться законченной.

Только шлифовка?

Если правильно и аккуратно выполнить все операции по шлифовке коленчатого вала, то реально добиться 0,003 мм эллипсности, конусности и взаимного биения шеек, что будет даже лучше, чем у нового вала. Однако блестящие «свежешлифованные» поверхности шеек не должны вводить в заблуждение грамотного механика-моториста - микропрофиль шлифованной поверхности вала весьма далек от идеала. Дело в том, что острые выступы микронеровностей способны некоторое время в начальный период эксплуатации двигателя изнашивать вкладыши, одновременно загрязняя систему смазки продуктами износа (масло будет быстро приобретать характерный серый цвет). Кроме того, что не менее неприятно, острые, с микрозаусенцами, края смазочных отверстий необратимо повреждают вкладыши, оставляя на них характерные борозды. Да и галтели с недопустимо грубой после шлифовки поверхностью - верный путь к усталостному разрушению вала.

Устранить микронеровности и загладить острые края смазочных отверстий нетрудно - необходима доводка шеек вала после шлифовки.

Существует два основных способа доводки шеек - суперфинишная обработка и полировка. Первый способ дает более качественную поверхность, но сложен, требует специального оборудования и чаще применяется в массовом производстве.

В ремонте доступнее и проще полировка. Ее делают вручную в несколько переходов - вначале с помощью мелкозернистой наждачной бумаги, вставляемой в специальные клещи-захваты, затем - абразивной пастой. При съеме не более 0,001 мм полировка позволяет практически полностью убрать микронеровности. Что, кстати, нетрудно проверить - достаточно провести по шейке медным предметом до и после полировки: в последнем случае на шейке не остается следа, даже если она выглядит не такой блестящей и красивой.

И еще...

Иногда шейки вала «не проходят» в ближайший ремонтный размер - слишком велик их износ. В результате приходится значительно - до 0,75-1,0 мм (зависит от наличия соответствующих ремонтных вкладышей) занижать размер шейки.

Несмотря на опасения некоторых механиков о якобы срезаемом «твердом слое» и низком ресурсе отремонтированного вала, никаких неприятностей не наблюдаeтся. С одной стороны, валы после стандартной закалки токами высокой частоты (ТВЧ) имеют глубину упрочненного слоя до 1,0 мм. С другой - практика показала, что для надежной и долговечной работы вала более важна его геометрия и геометрия сопряженных деталей. А это зависит от квалификации механика-моториста, от точности шлифовального станка, на котором ремонтировали вал, но главное - от опыта и умения специалиста-шлифовщика, без которого рассчитывать на успешный ремонт коленчатого вала по меньшей мере наивно.

Полировка шеек коленчатого вала - Автомобили

Всего каких-то пару десятков лет назад считалось, что рабочая поверхность цилиндров двигателя должна быть отполированная. До сих пор термин остался "сделать зеркало". Но, как оказалось, блестящая гладкая поверхность цилинра совсем не оптимальна для долговечной его работы. Более того, все наоборот, долговечность намного возрастает, если на цилиндры наносить специальной формы и профиля "царапки". Плосковершинное хонингование называется. Целая наука сейчас есть про те царапки.

Аналогичную информацию встретил и по шейкам коленвала. Кто-то из известных автостроителей уже наносит "царапки" и на коленвал. Работает техническая мысль! Жаль не записал источник...

Для безотказной работы коленвала при его перешлифовке куда важнее соблюсти требуемые размеры и геометрию шеек, а также их расположение относительно номинального положения. Ну, а насчет "зрекальности" поверхности шеек, то многолетний опыт показывает, что чистоты поверхности после правильно заправленного шлифовального круга вполне хватает для нормальной работы двигателя. Правда, и вреда (как и бросающейся в глаза пользы) от полировки шеек коленвала (в отличие от поверхности цилиндров) тоже не замечено.

Кстати, если разобрать долго работавший двигатель и померить износ в подшипниках скольжения коленвала, то обнаружится, что износ шеек примерно на порядок (в десять раз) больше, чем износ вкладышей (сталеаллюминиевых)....

Как работает коленвал - Все подробности

При сгорании топлива поршень выстреливает прямо вниз по цилиндру, работа коленчатого вала заключается в преобразовании этого поступательного движения во вращение - в основном за счет поворота и подталкивания поршня вверх по цилиндру.

Терминология коленчатого вала достаточно специализированная, поэтому мы начнем с названия нескольких частей. А журнал это часть вала, которая вращается внутри подшипника. Как видно выше, шейки коленчатого вала бывают двух типов: коренные шейки образуют ось вращения коленчатого вала, а шатунные шейки закреплены на концах шатунов, доходящих до поршней.

Для дополнительной путаницы шейки шатуна сокращенно обозначаются шатунными шейками и также обычно называются шатуны , или цапфы головные . Цапфы стержней соединены с главными шейками полотна .

Расстояние между центром коренной шейки и центром пальца коленчатого вала называется радиус шатуна , также называемый ход кривошипа . Это измерение определяет диапазон хода поршня при вращении коленчатого вала - это расстояние сверху вниз известно как ход .Ход поршня будет в два раза больше радиуса кривошипа.

Задний конец коленчатого вала выходит за пределы картера и заканчивается фланец маховика . Этот прецизионно обработанный фланец прикреплен болтами к маховик , большая масса которого помогает сгладить пульсацию поршней, срабатывающих в разное время. Через маховик вращение передается через трансмиссию и главную передачу на колеса. В АКПП коленчатый вал прикручен к коронная шестерня , несущий гидротрансформатор, передавая привод на автоматическую коробку передач.По сути, это мощность двигателя, а мощность передается туда, где она необходима: гребные винты для лодок и самолетов, индукционные катушки для генераторов и опорные колеса транспортного средства.

Передний конец коленчатого вала, иногда называемый носиком, представляет собой вал, выходящий за пределы картера. Этот вал будет заблокирован с зубчатым колесом, которое приводит в движение клапанный механизм через зубчатый ремень или цепь [или, в высокотехнологичных приложениях, зубчатые передачи], и шкив, который передает мощность через приводной ремень на такие аксессуары, как генератор переменного тока и водяной насос .

Детали коленчатого вала

Основные журналы

коренные шейки или просто главные шейки зажаты в блоке двигателя, и двигатель вращается вокруг этих шейек. Все шейки коленчатого вала будут обработаны идеально гладкими и круглыми и часто закалены. Основные шейки закреплены в седлах, в которых установлена ​​сменная вкладыш подшипника буду сидеть. Подшипник мягче, чем шейка, и его можно заменять по мере износа, и он спроектирован так, чтобы поглощать небольшое количество загрязнений, если таковые имеются, чтобы не повредить коленчатый вал.А крышка коренного подшипника затем прикручивается к шейке болтами и затягивается с точным крутящим моментом.

[Схема главной цапфы с подшипниками и отверстиями]

Цепи движутся по масляной пленке, которая вдавливается в пространство между шейкой и подшипником через отверстие в седле коленчатого вала и соответствующее отверстие во вкладыше подшипника. При правильном давлении масла и подаче масла шейка и подшипник не должны соприкасаться.

Шатунные шейки

шатунные шейки смещены от оси вращения и прикреплены к большие концы шатунов поршней.Как ни странно, их также часто называют шатуны или Шатунные опоры . Подача масла под давлением идет через наклонный масляный канал, просверленный от основной шейки.

В некоторых шатунах просверлено отверстие для масла, позволяющее распылять масло на стенку цилиндра. В этом случае опорные подшипники шатуна будут иметь канавку для подачи масла в шатун.

Смазка коленчатого вала

Контакт металл-металл - враг эффективного двигателя, поэтому и главные шейки, и шейки стержней движутся по масляной пленке, которая находится на поверхности подшипника.

Подать масло к коренному подшипнику скольжения очень просто: масляные каналы от блока цилиндров ведут к каждому седлу коленчатого вала, а соответствующее отверстие в корпусе подшипника позволяет маслу достигать шейки.

Подшипники шейки шатуна требуют такой же смазки, но они вращаются вокруг коленчатого вала со смещением. Для подачи масла к этим подшипникам масляные каналы проходят внутри коленчатого вала - через основную шейку, по диагонали через перемычку и через отверстия в шейках шатунов.Канавка в подшипнике коренной тяги позволяет маслу непрерывно продавливать масло по каналу к шейкам шатуна, чему способствует выброс наружу центробежной силой вращающегося коленчатого вала.

Зазоры между шейками и подшипниками являются основным источником давления масла в двигателе. Если зазоры слишком велики, масло вытекает свободно, а давление не поддерживается. Слишком малые зазоры вызовут высокое давление масла и риск контакта металла с металлом. Поэтому важно измерять зазор между подшипниками и шейками при ремонте двигателя.

Противовесы

Коленчатый вал подвержен сильным вращающим силам, а масса шатуна и поршня, движущиеся вверх и вниз, оказывает значительную силу. Противовесы отлиты как часть коленчатого вала, чтобы уравновесить эти силы. Эти противовесы обеспечивают более плавную работу двигателя и более высокие обороты.

Коленчатый вал балансируется на заводе. В этом процессе прикрепляется маховик, и весь узел вращается на машине, которая измеряет, где он находится вне баланса. Балансировочные отверстия просверлены в противовесах для уменьшения веса. Если необходимо добавить вес, просверливается отверстие, которое затем заполняется хэви-металлом или меллори. Это повторяется до тех пор, пока коленчатый вал не будет сбалансирован.

Упорные шайбы коленчатого вала

В какой-то момент по его длине будут установлены две или более упорных шайб, чтобы предотвратить продольное перемещение коленчатого вала. На изображенном коленчатом валу с обеих сторон центральной шейки имеются упорные шайбы.Эти упорные шайбы устанавливаются между обработанными поверхностями перемычки и седла коленчатого вала, сохраняя заданный небольшой зазор и сводя к минимуму величину бокового перемещения, доступного для коленчатого вала. Расстояние, на которое коленчатый вал может перемещаться из конца в конец, называется его осевым люфтом, и допустимый диапазон будет указан в руководствах по обслуживанию.

В некоторых двигателях эти упорные шайбы являются частью коренных подшипников, в других, как правило, более старых типов, используются отдельные шайбы.

Основные сальники

Оба конца коленчатого вала выходят за пределы картера, поэтому необходимо предусмотреть какой-либо метод предотвращения утечки масла через эти отверстия.Это работа двух основных масляных уплотнений, одного спереди и одного сзади.

задний главный сальник устанавливается между задней главной шейкой и маховиком. Обычно это манжетное уплотнение из синтетического каучука. Прокладка вдавливается в углубление между блоком цилиндров и масляным поддоном. Уплотнение имеет фасонную кромку, которая плотно прижимается к коленчатому валу пружиной, называемой подвязкой.

Неисправное масляное уплотнение является серьезной проблемой, поскольку оно находится рядом с главными шейками, которые получают и нуждаются в хорошей подаче масла под давлением.В сочетании с вращением коленчатого вала это приводит к быстрой потере моторного масла из-за любого нарушения сальника.

сальник передний похож на задний, хотя его выход из строя менее катастрофичен, и к нему легче получить доступ. Передний сальник будет за шкивами и шестерней привода ГРМ.

Сальник сам по себе является дешевой деталью, но для его доступа требуется много труда по снятию трансмиссии, сцепления, маховика и, возможно, коленчатого вала.Поэтому рекомендуется заменять сальники каждый раз, когда двигатель разбирается и детали доступны.

Схемы коленчатого вала

Базовый коленчатый вал, показанный выше, от рядного 4-цилиндрового двигателя. Другие конструкции коленчатого вала будут зависеть от компоновки двигателя. Более подробно эта тема освещена в статье о компоновке двигателя. Но следует отметить, что в двигателях V-образной формы и W два шатуна могут иметь общую шейку штока.Ниже показаны некоторые типовые схемы коленчатого вала.

Коленчатый вал V6

Коленчатый вал V6 является в некотором роде специализированным, потому что он требует, чтобы шейки шатуна были разделены для поддержания равномерного интервала зажигания. Это требует, чтобы цапфы стержней были расколоты или раздвинуты, что известно как шплинт или Журнал разъемный дизайн.

Неисправности

Коленчатый вал, будучи очень прочным, является надежным элементом, и поломки коленчатого вала редки, если только двигатель не работает в экстремальных условиях.

Изношенные журналы

Без достаточного давления масла шейки коленчатого вала будут контактировать с опорными поверхностями, постепенно увеличивая зазор и ухудшая давление масла. В крайнем случае это может привести к разрушению подшипников и серьезному повреждению двигателя. Если журналы изношены до предела, предусмотренного для их использования, или уже не имеют идеально круглой формы, их необходимо отшлифовать, как описано ниже.

Усталость

Постоянные силы, действующие на коленчатый вал, могут привести к усталостным трещинам, обычно обнаруживаемым на галтеле, где шейки соединяются со стенкой.Гладкий радиус этого галтеля имеет решающее значение для предотвращения слабых мест, ведущих к усталостным трещинам. Коленчатый вал можно проверить на наличие трещин с помощью магнитофлюкс .

Модификации и обновления

Шлифовка коленчатого вала

Журналы изнашиваются со временем. Они могут иметь шероховатую поверхность, округлые или сужающиеся. В этих случаях их поверхность можно восстановить с помощью шлифовки коленчатого вала. Когда коленчатый вал заточен, его шейки будут уменьшаться в диаметре и, следовательно, увеличиваться в размерах, поэтому потребуется установка более толстых подшипников.

Коленчатые валы Stroker

Объем цилиндра можно увеличить, перемещая поршни на более длинный ход. Ход двигателя определяется радиусом кривошипа, который представляет собой расстояние между шейками шатуна и коренными шейками. Коленчатый вал с большим радиусом кривошипа обеспечивает более длинный ход и больший объем цилиндра - это известно как коленчатый вал с ходовым механизмом. При установке строкера потребуются более короткие шатуны. В противном случае поршни могут перемещаться в цилиндре слишком высоко, вызывая неприемлемо более высокое сжатие или удар о крышу цилиндра.

Коленчатые валы Stroker

для часто модифицируемых двигателей продаются в комплекте с более короткими шатунами и поршнями. Строкер-комплект для двигателя Mazda MX5 Miata 1.8L может преобразовать его в двигатель 2L по цене около 5500 долларов.

Офсетное шлифование

Альтернативой установке коленчатого вала с ходовым механизмом является шлифовка шейки шатуна до меньшего размера со смещением - таким образом, центр шейки смещается от средней линии коленчатого вала.Это проиллюстрировано выше.

Видно, что при перемещении центра шейки штока радиус кривошипа был увеличен, что привело к увеличению хода. Это специализированная обработка, и достигаемое увеличение хода будет зависеть от толщины шейки.

Как делается коленчатый вал

В большинстве серийных двигателей используется чугунный коленчатый вал, который изготавливается путем заливки расплавленного чугуна в форму. Кованые коленчатые валы используются в некоторых высокопроизводительных двигателях.Кованый коленчатый вал изготавливается путем нагревания стального блока до докрасна, а затем с использованием чрезвычайно высокого давления для придания ему формы.

После ковки или литья коленчатого вала его шейки и опорные поверхности обрабатываются идеально гладкими. Просверливаются масляные каналы или масляные каналы. Серийные двигатели обычно оставляют перемычки с их первоначальной черновой отделкой, но двигатели с высокими характеристиками обрабатывают каждую часть коленчатого вала, чтобы уменьшить сопротивление масла.

Шейки должны быть тверже, чем их подшипники, чтобы износ заменялся на подшипниках, а не на коленчатом валу, который должен служить в течение всего срока службы двигателя.Производственный процесс будет включать упрочнение этих участков посредством азотирования или термообработки.

Коленчатые валы с исключительно высокими характеристиками и нестандартными характеристиками изготавливаются из блока твердого материала, в результате чего получается коленчатый вал в виде заготовки. Производство одноразового коленчатого вала с помощью этого процесса будет стоить минимум около 3000 долларов, поэтому он предназначен для соревнований, гонок и восстановления.

.

Руководство по коленчатым валам • Muscle Car DIY

Коленчатый вал - это сердце двигателя. Следовательно, он должен быть достаточно прочным, чтобы выдерживать динамические требования двигателя, а это значит, что он должен выдерживать определенные нагрузки по мощности и крутящему моменту. Он также должен справляться с частотой вращения кривошипа и отклоняющими силами, возникающими при срабатывании цилиндра. Зазоры коренных и шатунных подшипников должны быть правильными, чтобы поддерживать коренные шейки коленчатого вала и большие концы шатунов. Кроме того, кривошип должен быть прямым, чтобы исключить сопротивление качению и предотвратить износ подшипников, и он должен быть надлежащим образом сбалансирован с вращающимися и совершающими возвратно-поступательное движение узлами.


Этот технический совет взят из полной книги СОВРЕМЕННЫЕ МЕТОДЫ БЛУПРИНТИРОВАНИЯ ДВИГАТЕЛЯ: ПРАКТИЧЕСКОЕ РУКОВОДСТВО ПО ПРЕЦИЗИОННОМУ ДВИГАТЕЛЮ. Подробное руководство по этому вопросу вы можете найти по этой ссылке:
УЗНАТЬ БОЛЬШЕ ОБ ЭТОЙ КНИГЕ

ПОДЕЛИТЬСЯ СТАТЬЕЙ: Пожалуйста, не стесняйтесь поделиться этой статьей на Facebook, на форумах или в любых клубах, в которых вы участвуете. Вы можете скопировать и вставить эту ссылку, чтобы поделиться: https: // musclecardiy.ru / performance / how-to-blueprint-motors-crankshafts-guide /


Типы коленчатого вала

Коленчатые валы современные предлагаются в трех основных конструкциях: литые, кованые и заготовки. Литые шатуны подходят для мощности от 300 до 500 л.с., в зависимости от применения. Шатуны из кованой стали, в зависимости от марки стали, рассчитаны на мощность до (а часто и выше) 1000 л.с. Коленчатые валы из заготовок представляют собой предел прочности для высокой мощности и в основном используются в гонках профессионального уровня.


Сверхлегкие кривошипы для гоночных двигателей доступны со снятыми противовесами, шейками с перфорацией и т.д. Кроме того, популярная модификация предполагает обкатку и обрезку кромок противовесов. Выпуклый (закругленный профиль) и острие (более узкий профиль фаски) вместе создают "аэродинамическое" поперечное сечение конца противовеса. Профиль с выпуклым носом находится на переднем конце противовеса, в то время как кромка ножа находится на заднем конце, аналогично по концепции поперечному сечению крыла самолета.Теоретически уменьшаются такие факторы сопротивления, как сопротивление воздуха и прилипание масла. Для уличного паровоза это не стоит времени и усилий. Зарезервируйте это для гонок, где (теоретически) вы получите преимущества в виде снижения сопротивления воздуха и увеличения смазки. (Фото любезно предоставлено Кэллисом)

Коленчатые валы литые

Первый этап процесса литья включает заливку расплавленной смеси железа и других сплавов в форму из двух частей. Отливка охлаждается, затвердевает и выходит из формы.На этом этапе происходит чистовая обработка: обработка всех цапф; доработка противовесов, фланцев и носа; сверление / нарезание отверстий под болты маховика; и бурение критических масляных каналов. В процессе литья создается случайная зернистая структура, а материал относительно пористый, поэтому литая рукоятка подвержена растрескиванию и разрушению при высоких нагрузках. Четкая «линия разъема» половин формы определяет литые кривошипы.

Кованые коленчатые валы

Кованый кривошип начинается с плотного кованого куска стали.Хотя конкретные процедуры могут отличаться у производителей коленчатых валов на вторичном рынке, кованые коленчатые валы обычно изготавливают, начиная со стального слитка, который нагревают до температуры около 2200 градусов по Фаренгейту, помещают в его формовочную матрицу и штампуют прессом / молотком до грубой формы. Огромное давление (около 240000 фунтов на квадратный дюйм при каждом ударе) уплотняет молекулы стали в очень плотную зернистую структуру, обеспечивая повышенную прочность.


Кованые коленчатые валы значительно прочнее литых.Структура зерен более однородная и плотная, что делает поковку менее склонной к растрескиванию и растрескиванию.

Любая лишняя сталь, которая вытесняется из матрицы, затем обрезается, обычно в процессе резки. Затем черновая поковка подвергается термообработке и отпуску. Затем следует чистовая обработка и снятие напряжений. Снятие напряжения выполняется для устранения любых внутренних напряжений, которые могли возникнуть во время обработки. Наконец, выполняется поверхностное упрочнение. Использование плотных стальных слитков, кованных под действием тепла и давления, позволяет получить гораздо более прочный коленчатый вал, который имеет гораздо большее сопротивление растрескиванию, чем отливка.


.

Коленчатый вал - обзор | Темы ScienceDirect

Коленчатый вал по существу является основой двигателя внутреннего сгорания. Коленчатый вал отвечает за правильную работу двигателя и преобразование линейного движения во вращательное. Коленчатые валы должны обладать очень высокой усталостной прочностью и износостойкостью для обеспечения длительного срока службы. Коленчатый вал испытывает высокие циклические нагрузки. Высокое значение коэффициента теплового расширения может стать проблемой при выборе материалов для коленчатых и распределительных валов.Ковкий чугун, кованая сталь и титан обычно используются в качестве материалов для изготовления валов, как в Prosche GT3 RS. Коленчатые валы из алюминиевых композитов, армированных SiC и графитом, находятся в стадии разработки (Эльмаракби, 2014). Алюминиевые композиты отвечают всем требованиям, за исключением того, что они неизбежно выйдут из строя при циклической нагрузке. Пример алюминиевого коленчатого вала, армированного частицами SiC и графита, показан на Рисунке 12.

.

Crankshaft Tech - Popular Hot Rodding Magazine

Рабочий объем ложе 80-х годов. Дни незначительного и примитивного увеличения рабочего объема за счет шлифовки кривошипа со смещением стали более далекими воспоминаниями, чем президентская кампания Фрица Мондейла. В связи с появлением в последнее десятилетие количества доступных на вторичном рынке коленчатых валов толкателей кубические дюймы стали дешевле, чем когда-либо. Одновременно с этим технология головок цилиндров была вынуждена идти в ногу с требованиями непрерывно увеличивающегося рабочего объема, а мощность в лошадиных силах разрослась до неприличных размеров.Поскольку наше хобби - это коллективные шалости в золотой век лошадиных сил, ни один компонент двигателя, за исключением головки блока цилиндров, не смог продвинуть дело так, как современный коленчатый вал. Так что, если ваш санкционирующий орган не запрещает это, если вы строите двигатель, вы, вероятно, хотите купить кривошипный двигатель.

Тем не менее, вариантов много, и не все кривошипы одинаковы. Стоит ли соглашаться на стальное литье или переходить к ковке? В чем разница между сталью 5140, 4130 и 4340? Вам действительно нужно во всех случаях переходить к подделке? Соответствует ли billet своей священной репутации? Как отличить маркетинговую шумиху от реального качества продукта? И самое главное, какой коленчатый вал подходит для вашей области применения? К счастью, на этом дезинформация заканчивается.Мы связались с ведущими производителями коленчатых валов в стране, чтобы дать исчерпывающие ответы на все вышеупомянутые вопросы, включая понимание металлургии и различных производственных технологий. Не паникуйте, если вы предпочитаете менее популярные модели, потому что у нас также есть модели Buick, Olds и Pontiac. Хотя некоторая информация не соответствует общепринятому мнению, факты не всегда легко усвоить. У нас есть правда, но вы справитесь?

Cast vs. Forged vs.Заготовка Технологии изготовления играют важную роль в предельной прочности коленчатого вала. Литье и ковка - два наиболее распространенных метода производства, каждый из которых имеет свои преимущества и недостатки. Литые кривошипы начинают свою жизнь в виде жидкого чугуна или стали и разливаются в форму. Это позволяет необработанной отливке максимально приближаться к ее окончательной форме, что сокращает объем окончательной обработки. В сочетании с тем фактом, что оборудование, необходимое для производства отливок, относительно недорогое, становится очевидным, почему литые кривошипы являются преобладающим выбором среди оригинальных комплектующих.Литые шатуны на вторичном рынке предлагают значительное повышение прочности и могут быть приобретены всего за 200 долларов.

Посмотреть все 7 фотографий

В отличие от этого, процесс ковки требует тяжелых прессов и более обширных операций окончательной обработки. Ковка включает нагревание цилиндрической заготовки металла до расплавленного состояния, а затем придание ей формы с помощью прессов и штампов. Именно это сжимающее действие создает более прочный конечный продукт по сравнению с отливкой. «В отливке структура зерен похожа на пляжный песок», - объясняет Том Либ из Scat.«В поковке сила пресса сжимает зерна вместе, так что это становится единым однородным потоком зерна. Поскольку пространство между молекулами сжимается, каждая молекула вынуждена« держаться за руки »со следующей молекулой». Недостатком поковки по сравнению с литой рукояткой является стоимость. Гидравлические прессы для тяжелых условий эксплуатации, используемые в процессе ковки, чрезвычайно дороги, что приводит к удорожанию продукта. Ожидайте, что цены на более популярные двигатели начнутся от 500 долларов.

Думайте о кривошипах для заготовок как о ответвлении кованых кривошипов.Как и поковка, кривошип для заготовки начинается с большого цилиндрического стального слитка. Однако, в то время как кованый кривошип сжимается в процессе ковки, стальной слиток, используемый в кривошипе для заготовки, уже кован, хотя и не так сжат, как в кованом кривошипе. Ключевое различие между ними заключается в том, как слитки имеют форму кривошипов. «Металлический стержень, используемый для изготовления кованого кривошипа SBC диаметром 4000 дюймов, имеет диаметр около 4,75 дюйма, а общая ширина кривошипа составляет 6,75 дюйма после завершения процесса ковки», - говорит Либ.«Металлический стержень, используемый в кривошипе для заготовки с таким же ходом, намного больше, примерно 8 дюймов, весит 350 фунтов по сравнению со 150 фунтами в кованом кривошипе. Вместо того, чтобы скручивать и колотить металл в разных направлениях, как в поковке, Кривошип заготовки изготавливается путем измельчения металла таким образом, чтобы структура зерна проходила параллельно по всей длине кривошипа ". Из-за увеличения количества материалов и рабочей силы по сравнению с кованым кривошипом, кривошипы для заготовок являются самыми дорогими из всех. Индивидуальные одноразовые экземпляры имеют ценник в районе 3000 долларов.Что касается того, является ли кривошип для заготовки более прочным, чем поковка, поскольку в отрасли нет единого мнения, различные производители выяснят это позже, и мы позволим вам сделать это.

Strength Прежде чем углубляться в специфику металлургии, есть прочностные характеристики, универсальные для всех отливок и поковок, которые ничего не стоят. В лаборатории металл проверяют на прочность, растягивая круглый стержень диаметром один дюйм до тех пор, пока он не сломается. Прочность на растяжение связана с силой, необходимой для начала растяжения стержня.Предел текучести описывает силу, необходимую для дальнейшего разрыва стержня. Разница между пределом прочности на разрыв и предел текучести между отливками и поковками значительна. «При литье вам нужно всего лишь уменьшить поперечное сечение стержня на шесть процентов, прежде чем он сломается», - объясняет Либ. «Поковка позволяет уменьшить поперечное сечение на 20 процентов до того, как пруток сломается».

Просмотреть все 7 фотографий

Металлургия Поскольку сплав состоит в основном из железа, небольшое количество металла, добавленного к этому железу, определяет различия в прочности между различными марками стали.Набор стандартов, установленных Американским обществом металлов (ASM), определяет содержание марок металлов в дополнение к их номенклатуре. «Для литых шатунов начального уровня увеличение содержания углерода по отношению к железу улучшает прочность, - говорит Алан Дэвис из Eagle Specialty Products. Самые простые кривошипы - это чугун, у которых обычно есть предел прочности на разрыв от 70 000 до 80 000 фунтов на квадратный дюйм. Незначительное увеличение содержания углерода в железе приводит к образованию чугуна с шаровидным графитом, что приводит к пределу прочности на разрыв примерно 95000 фунтов на квадратный дюйм.Оба материала широко используются производителями оригинального оборудования, но не совсем подходят для более серьезных применений в кривошипах послепродажного обслуживания. Обычно используемая в коленчатых валах начального уровня послепродажного обслуживания литая сталь имеет более высокое содержание углерода, чем чугун с шаровидным графитом, и имеет предел прочности на разрыв около 105 000 фунтов на квадратный дюйм. «В типичном малом блоке кривошип из литой стали может легко выдерживать 500 л.с.. Хотя мы видели, что они доводятся до очень высоких уровней мощности, мы обычно рекомендуем кованый кривошип для любого уровня мощности, превышающего этот уровень».

Двигаясь вверх по столбу, заводские кованые кривошипы изготавливаются из стальных сплавов, таких как 1010, 1045 и 1053.Хотя их предел прочности на растяжение аналогичен пределу прочности при растяжении кривошипа из литой стали, их показатель удлинения более чем в три раза выше. В результате получается гораздо менее хрупкий материал. Тем не менее, они далеки от максимальной прочности стальных кривошипов на вторичном рынке. «Заводские шатуны из кованой стали имеют высокое содержание углерода, но в них отсутствует хром и никель, как в сплавах премиум-класса, используемых в шатунах на вторичном рынке», - объясняет Либ из Scat. «В этих типах сплавов хром и никель делают их более прочными.Есть и другие материалы, но они используются, чтобы убедиться, что все смешивается должным образом и не оказывает ударного воздействия ».

Самая простая сталь для вторичного рынка - 5140, которая имеет предел прочности на разрыв около 115 000 фунтов на квадратный дюйм. быть - и в некоторой степени все еще остается - отличным выбором для гонщиков с ограниченным бюджетом, но встречается реже, чем в прошлые годы, из-за растущей доступности шатунов из высококачественного сплава. К ним относятся поковки 4130 и 4340, которые имеют рейтинг прочности на разрыв приблизительно 125 000 фунтов на квадратный дюйм и 145 000 фунтов на квадратный дюйм соответственно.Строители двигателей и производители коленчатых валов повсеместно считают сплав 4340 идеальным для прочности и долговечности. Поскольку цена на шатуны 4340 на вторичном рынке составляет от 500 до 600 долларов за обычные платформы двигателей, популярность более мелких марок стали снижается. «У нас много клиентов, которые развивают 1500 л.с. через кривошип из кованой стали 4340», - говорит Дэвис из Eagle.

Скручивание и ковка без скручивания Кованые кривошипы прижимаются к штампу, но для этого используются два разных метода.Самый простой метод - выковать одну из кривошипов за раз в плоской штамповке. Затем кривошип поворачивается, и штамп выполняет следующий бросок. И наоборот, при ковке без скручивания все четыре метала кованы одновременно, что требует более сложной штамповки. Говорят, что поковки без скручивания уменьшают внутренние напряжения коленчатого вала в процессе производства, но не все это покупают. «Если все переменные контролируются должным образом в процессе ковки, разница между поковками на скручивание и без скручивания практически отсутствует», - считает Джеймс Хамфрис из Lunati.«Большинство шатунов на вторичном рынке в наши дни в любом случае не являются коваными, так что нет смысла спорить в любом случае. Это больше похоже на маркетинг».

Термическая обработка Помимо материалов и методов литья или ковки, термическая обработка может значительно повлиять на прочность коленчатого вала. Азотирование является наиболее распространенным методом термообработки, используемым в кривошипах вторичного рынка, когда ионизированный азот осаждается в вакууме на поверхность кривошипа в печи. Путем проникновения в металлическую поверхность от 0,010 до 0,012 дюйма и изменения микроструктуры стали твердость поверхности удваивается с 30 до 60 по шкале Роквелла, а усталостная долговечность увеличивается на 25 процентов.OE обычно предпочитают индукционную закалку азотированию, что приводит к более глубокому проникновению в поверхность металла (от 0,050 до 0,060 дюйма). В этом процессе для нагрева поверхности используется магнитное поле. «У обоих методов есть свои плюсы и минусы, но азотирование наиболее распространено на вторичном рынке», - объясняет Хамфрис. «Индукционная закалка более локализована, тогда как азотирование обрабатывает весь кривошип сразу. Однако индукционная закалка проникает глубже, что позволяет повернуть шейки один или два раза во время восстановления перед повторной термообработкой кривошипа.«

Knife-Edging Действительно ли обрезка ножей противовесов кривошипа снижает сопротивление воздуха и увеличивает мощность? Не все так думают.« Ножевые кромки были разработаны для облегчения балансировки, а не для увеличения мощности, и на улице они мало пригодны. «Мотор», - объясняет Дуэйн Боес из Callies. «Как снегоочиститель, масло ударяется о лезвие ножа и разбрасывается повсюду, хотя в идеале оно должно приземлиться на нос и уйти в сторону. Закругленная передняя кромка с выпуклым носом является наиболее эффективной, как нос корабля."

Просмотреть все 7 фотографий

Перекрытие Как следует из этого термина, перекрытие шейки - это просто то, насколько диаметры коренной шейки кривошипа и шейки шатуна перекрывают друг друга. шейки уменьшают перекрытие и снижают прочность и долговечность. Точно так же меньшие шатуны и коренные шейки уменьшают скорость подшипника и трение, но также уменьшают перекрытие ». Причина, по которой GM увеличила размер магистрали до 2,65 дюйма на 400 SBC по сравнению с 2.45 дюймов на 350 должны были поддерживать перекрытие журналов с более длинным ходом 3,75 дюйма », - объясняет Джадсон Массингилл из Школы автомобильных машинистов.

Заготовка или ковка? Хотя мы четко очертили иерархию различных классов отливок и поковок, мы не заявили, предлагают ли кривошипы из заготовок или их кованые аналоги максимальную прочность. Откровенно говоря, мы не знаем ответа и даже не будем пытаться делать обоснованное предположение. Существуют веские аргументы для каждого из множества надежных источников, поэтому мы напечатаем их слова и предоставим вам возможность решать.

Алан Дэвис из Eagle: «Люди думают, что заготовка прочнее, чем поковка, но это неправда. Заготовка получила такую ​​репутацию еще в те времена, когда кованые шатуны для вторичного рынка были недоступны, а заготовка была единственным способом купить высокопроизводительный кривошип. В случае кованого кривошипа в процессе ковки создается переплетенная структура волокон. В случае кривошипа из заготовки структура волокон проходит просто параллельно кривошипу. Заготовка - лучший вариант, если вам нужен нестандартный одноразовый кривошип, поскольку он не работает. t требуют дорогостоящего инструментального оборудования.С другой стороны, 200-тонные прессы, необходимые для поковок, стоят как минимум шестизначную сумму, поэтому они больше подходят для больших серий ».

См. Все 7 фотографий

Tom Lieb Of Scat: « Поковка - это не такой прочный, как заготовка, потому что в процессе ковки зернистая структура растягивается и срезается. Поковка начинается с круглого металлического стержня, который скручивается и поворачивается, чтобы стержень метался. То, что раньше было центральной линией стержня, теперь смещено, а зерна растягиваются, травмируются и ослабляются, хотя некоторые его участки значительно прочнее, чем в отливке.В заготовке отсутствуют участки с повышенным напряжением, поскольку структура зерен проходит параллельно длине всего кривошипа. Поковки прочнее заготовки в болтах и ​​осях, потому что металл не растягивается и не режется. Нет ни одной команды Top Fuel, Funny Car, Nextel Cup или F1, которая использует кованые шатуны, поэтому вы должны спросить себя, почему ».

Dwayne Boes Of Callies « Если для обоих используется один и тот же материал поковка прочнее заготовки, потому что поток зерна нарушается и перемещается.Однако гораздо легче получить специальные сплавы в материале заготовки ».

Джадсон Массингилл из SAM: « До 600–700 л.с. поковки ничем не уступают кривошипам заготовки при соответствующем перекрытии шейки. Однако, когда вы начинаете уменьшать перекрытие с помощью длинных ходов и небольших шейок стержня для уменьшения скорости подшипника, заготовка выходит наверх. В наших двигателях заготовка позволяет нам избежать перекрытия цапф ».

Альтернатива - Традиционно на вторичном рынке пренебрегли Buick, Olds и Pontiac.Что касается шатунов, то это все еще верно, но в меньшей степени. Усилия стойких приверженцев платформы двигателей привели к появлению на некоторых рынках специализированного рынка только что выпущенных стальных шатунов. В других случаях для каждого семейства двигателей есть специалисты, которые могут модифицировать заводские шатуны, чтобы получить желаемый дополнительный рабочий объем. Конечно, такие компании, как Winberg, Bryant и Moldex, сделают индивидуальный шатун из заготовки для любого двигателя, но мы предполагаем, что большинство хот-роддеров работают с реальным бюджетом.

Pontiac На создание этого автомобиля ушло 30 лет, но теперь энтузиасты Pontiac имеют в своем распоряжении как литые, так и кованые шатуны. В конце 90-х компания Butler Performance объединилась с Eagle для производства первого шатуна Pontiac на вторичном рынке, 4,250-дюймового стального литого блока для 3-дюймовых основных блоков 326/350/389/400. Только в этом году Butler Performance выпустила 4340 кованых шатунов с ходом 4,000, 4,250 и 4,500 дюйма для 3-дюймовых основных блоков. Компания также предлагает 4.000- и 4.250-дюймовые шатуны 4340 для блоков 421/428/455 с сетью 3,25 дюйма. «До того, как мы выпустили эти шатуны, единственным вариантом была шлифовка стандартного шатуна со смещением, что давало дополнительные 4-5 кубических сантиметров», - говорит Дэвид Батлер. «В наши дни цены на кованые шатуны настолько разумны, что нет причин даже беспокоиться о запасных частях».

Посмотреть все 7 фотографий

Buick К сожалению, рынок запасных частей не активизировался с новой конструкцией кривошипа Buick, но все еще есть варианты увеличения рабочего объема с хорошим запасом.По словам эксперта по Buick Майка Филлипса из Automotive Machine, все модели Buick 400, 430 и 455 имеют одинаковый коленчатый вал. «До 1974 года шатуны имели букву« N », которая, по мнению некоторых, означает узловатую», - объясняет он. «Эти штуки имеют массивную 3,25-дюймовую сеть, так что вы можете без проблем пропустить через них 600 л.с., а с ходом 3,900 дюйма шатуны Buick имеют большее перекрытие, чем у многих Chevrolet с большими блоками». Благодаря такому перекрытию их можно смещать на глубину до 4,15 дюйма. «Со смещением кривошипа на землю на 4.150 дюймов в 455, вы получите 494 дюйма, но я думаю, что это значительно ослабит кривошип. Лучше отшлифовать кривошип до 4 дюймов, и в этом случае вы все равно сможете уравновесить двигатель снаружи ».

Oldsmobile Среди больших блоков Oldsmobiles есть модели 425 и 455. Известный производитель двигателей Olds Дик Миллер говорит, что все 425 моторов были оснащены заводскими шатунами из кованой стали, в то время как количество двигателей 455 со стальными шатунами меньше 100. 455 - самый распространенный двигатель среди любителей Olds, у которого есть 4.Ход 250 дюймов. «В некоторых 455 шатунах была залита буква« N », а в другие -« CN », - говорит Миллер. «Ручка CN - более сильная из двух». Хотя Eagle производит замену кривошипа из литой стали мощностью 700 л.с., заводская деталь очень прочная. «Стандартный кривошип 455 можно отшлифовать до 4,500 дюймов, что составляет 496 кубических сантиметров. Эти кривошипы могут выдерживать до 650 л.с.».

Посмотреть все 7 фотографий

Ford FE Никогда еще не такой массовый, как Windsor или big-block серии 385, Ford FE до сих пор широко игнорировался на вторичном рынке.И Scat, и Eagle предлагают стальные кривошипы с ходом от 3,980 до 4,250 дюйма. «390 - самый популярный мотор FE, и почти все они имели литые шатуны», - объясняет гуру двигателей FE Барри Работник из Survival Motorsports. «Раньше люди покупали кованые кривошипы для грузовиков FE и срезали нос, чтобы поместиться в автомобильный блок, или шлифовали стандартные кривошипы со смещением, но теперь в этом нет необходимости. Я без проблем пропустил более 750 л.с. через литой кривошип Scat . " Кроме того, Survival Motorsports предлагает собственный кованый шатун 4340 ina 4.Ход 250 дюймов.

Если все остальное не работает Если вам нужно что-то сделать с кривошипом, что никто другой не сможет выполнить [или если вам нужен хорошо подготовленный шатун оригинального производителя для веселого уличного водителя - прим. Ред.], Позвоните Адни Брауну из Performance Crankshaft . Его специальность - ремонт и модификация заводских и неоригинальных шатунов в соответствии со стандартами, которые мало кто может коснуться. «В тех случаях, когда шатуны на вторичном рынке недоступны, мы отслеживаем старые поковки и устанавливаем ход любой длины, какой пожелает заказчик», - объясняет Адни.Помимо простых услуг, таких как ремонт сгоревших цапф, Adney может облегчить кривошип, изменить диаметр носа и приварить различные фланцы. «Не считайте это мусором и не прекращайте поиск, пока не позвоните нам сначала».

Иерархия металлов Поскольку Американское общество металлов допускает некоторую свободу действий в пределах каждого сорта металла, значения прочности на разрыв, приведенные в этой таблице и в других частях статьи, являются приблизительными, а не точными. Тем не менее, они действительно позволяют сравнивать прочность различных марок металлов.Хотя они составляют лишь небольшую часть всех стальных сплавов, установленных ASM, они являются наиболее распространенными в автомобильной промышленности. Вот краткое изложение:

МАТЕРИАЛ: ПРОЧНОСТЬ НА РАЗРЫВ: РЕЙТИНГ:
Чугун 70,000-80,000 фунтов на кв. Дюйм Двигатели OE
Чугун с шаровидным графитом 95000 фунтов на кв. Дюйм Двигатели OE
Стальное литье 105,000 фунтов на кв. Дюйм самые сильные из литых шатунов
1010/1045/1053 100000-110 000 фунтов на кв. Дюйм поковка заводская высокоуглеродистая
5140 сталь 115000 фунтов на кв. Дюйм поковка спортивная
4130 сталь 120,000-125,000 фунтов на кв. Дюйм сплав премиум
4340 сталь 140 000–145 000 фунтов на кв. Дюйм Самый прочный сплав для шатунов и шатунов
Показать все.

Материалы коленчатого вала


Материалы коленчатого вала должны быть легко обработаны, подвергнуты механической обработке и термообработке, и должны иметь соответствующую прочность, ударную вязкость, твердость и высокую усталостную прочность. Коленчатый вал изготавливается из стали методом ковки или литья. Вкладыши коренных подшипников и шатунных подшипников изготовлены из баббита, сплава олова и свинца. Кованые коленчатые валы прочнее литых, но стоят дороже. Кованые коленчатые валы изготавливаются из стали марки SAE 1045 или аналогичной.Поковка позволяет получить очень плотный и прочный вал с зерном, идущим параллельно направлению главного напряжения. Коленчатые валы отливаются из стали, модульного чугуна или ковкого чугуна. Основное преимущество процесса литья состоит в том, что материал коленчатого вала и затраты на обработку снижаются, поскольку коленчатый вал может быть изготовлен близко к требуемой форме и размеру, включая противовес. Литые коленчатые валы могут выдерживать нагрузки со всех сторон, поскольку структура металлического зерна однородна и случайна по всей длине. Противовесы на литых коленчатых валах немного больше, чем противовесы на кованных коленчатых валах, потому что литой металл менее плотный и, следовательно, несколько легче.

Обычно автомобильные коленчатые валы в прошлом выковывались, чтобы иметь все желаемые свойства. Однако с развитием чугуна с шаровидным графитом и усовершенствованием технологий литейного производства, теперь предпочтение отдается литым коленчатым валам при умеренных нагрузках. Кованые валы предпочтительны только для тяжелых условий эксплуатации. Выбор материалов коленчатого вала и термообработки для различных применений заключается в следующем.


(i) Сталь марганцево-молибденовая.

Это относительно дешевая ковочная сталь, которая используется для коленчатых валов бензиновых двигателей средней мощности.Этот сплав состоит из 0,38% углерода, 1,5% марганца, 0,3% молибдена и остального железа. Сталь подвергается термообработке закалкой в ​​масле от температуры 1123 К с последующим отпуском при 973 К, в результате чего твердость поверхности составляет около 250 по числу Бринелля. Благодаря такой твердости поверхности вал подходит как для подшипников с оловянно-алюминиевым, так и свинцово-медным покрытием.

(ii) 1% хромомолибденовая сталь.

Эта кузнечная сталь используется для коленчатых валов бензиновых и дизельных двигателей средней и большой мощности.В состав этого сплава входят 0,4% углерода, 1,2% хрома, 0,3% молибдена и остальное железо. Сталь подвергается термообработке путем закалки в масле при температуре 1123 К с последующим отпуском при 953 К. Это обеспечивает твердость поверхности около 280 по числу Бринелля. Для использования более твердых подшипников шейки могут быть закалены пламенем или индукционным нагревом до числа Бринелля 480. Для очень тяжелых условий эксплуатации процесс азотирования позволяет получить поверхность с числом алмазной пирамиды 700 (DPN). Эти опорные поверхности подходят для всех подшипников с оловянно-алюминиевым и бронзовым покрытием.

(iii) Никель-хром-молибденовая сталь с содержанием 2,5%.

Эта сталь используется в тяжелых дизельных двигателях. В состав этого сплава входят 0,31% углерода, 2,5% никеля, 0,65% хрома, 0,55% молибдена и остальное железо. Сталь сначала подвергается термической обработке закалкой в ​​масле от температуры 1003 К, а затем отпускается при подходящей температуре, не превышающей 933 К. Это обеспечивает твердость поверхности в районе числа Бринелля 300. Эта сталь немного дороже марганцево-молибденовых и хромомолибденовых сталей, но имеет улучшенные механические свойства.

(iv) Сталь с 3% хромомолибденом или 1,5% хромом-алюминием-модибденом.

Эти кованые стали используются для коленчатых валов дизельных двигателей, пригодных для подшипников из твердых материалов с высокой усталостной прочностью. Легирующие композиции включают 0,15% углерода, 3% хрома и 0,5% молибдена или 0,3% углерода, 1,5% хрома, 1,1% алюминия и 0,2% молибдена. Первоначальной термообработкой для обеих сталей является закалка в масле и отпуск при 1193 К и 883 К или 1163 К и 963 К соответственно для двух сталей.Валы закалены азотированием, так что азот поглощается их поверхностными слоями. Если азотирование выполняется хорошо в галтелях цапфы, усталостная прочность этих валов увеличивается как минимум на 30% по сравнению с валами с индукционной закалкой и валами с поверхностной закалкой пламенем. Сталь с 3% -ным содержанием хрома имеет относительно твердую поверхность и твердость от 800 до 900 DPN. С другой стороны, кожух из стали с содержанием 1,5% хрома имеет тенденцию быть немного более хрупким, но имеет повышенную твердость порядка 1050–1100 DPN.

(v) Чугуны с шаровидным графитом.

Эти чугуны также известны как чугуны со спероидальным графитом или ковкие чугуны. Эти серые чугуны содержат от 3 до 4% углерода и от 1,8 до 2,8% кремния, а графитовые включения диспергированы в перлитной матрице вместо образования поддельного графита. Для достижения этой структуры в расплав добавляют около 0,02% остаточного церия или 0,05% остаточного ниагния, или даже то и другое, в результате чего сера удаляется, и в литом материале образуется множество небольших сфероидов.Поверхностная твердость литого чугуна с шаровидным графитом выше, чем у стали аналогичной прочности, их соответствующие твердости составляют от 250 до 300 и от 200 до 250 по числу Бринелля. Пламенная или индукционная закалка позволяет получить поверхность с числами Бринелля от 550 до 580, а также при необходимости может быть применено азотирование.

Чугун с шаровидным графитом обладает преимуществами серого чугуна (то есть низкой температурой плавления, хорошей текучестью и литьем, отличной обрабатываемостью и износостойкостью), а также механическими свойствами стали (т.е. относительно высокой прочностью, твердостью, ударной вязкостью). , удобоукладываемость и закаливаемость).В настоящее время большое количество коленчатых валов как для бензиновых, так и для дизельных двигателей изготавливается из чугуна с шаровидным графитом, а не из более дорогой кованой дорогой кованой стали. Чтобы поддержать несколько более низкую ударную вязкость и усталостную прочность этих чугунов, используются более крупные сечения и максимальное количество основных шеек.

Термическая обработка.

(a) Пламенное и индукционное упрочнение поверхности.

Это методы поверхностного упрочнения стали с содержанием углерода от 0,3 до 0,5% без использования специальных соединений или газов.Основной принцип - быстрое нагревание поверхности с последующей закалкой только водой. Поскольку он нагревается локально, а не нагревает всю массу, упрочнение значительно снижается, и исключается деформация цапфы.

Закалка в пламени осуществляется кислородно-ацетиленовым пламенем при температуре поверхностного слоя от 993 до 1173 К. Температура поверхности зависит от эквивалента содержания углерода различных легирующих элементов в стали. За процессом нагрева следует закалка в воде.Поскольку фактический период нагрева и охлаждения имеет решающее значение, он задается заранее и в большинстве случаев регулируется автоматически.

Индукционная закалка осуществляется путем электрического наведения тепла на закаливаемую поверхность. В этом случае исключается опасность перегрева или ожога поверхности металла, как при закалке пламенем. Индукционная катушка окружает цапфу и пропускает ток высокой частоты. Это индуцирует циркулирующие вихревые токи на поверхности шейки, в результате чего ее температура повышается, и тепло в основном ограничивается внешней поверхностью шейки.В этом процессе, чем выше частота тока, тем ближе тепло к коже. При достижении необходимой температуры ток автоматически отключается, а поверхность одновременно гасится струей воды, проходящей через отверстия в индукционном блоке.

(б) Азотирование. Процесс поверхностного упрочнения.

В этом процессе цапфы нагреваются до 773 К в течение заданного времени в атмосфере газообразного аммиака, так что азот в газе поглощается поверхностным слоем.Легирующие элементы, такие как хром, алюминий и молибден, присутствующие в стали, из твердых нитридов. Нитриды алюминия образуют очень твердый мелкий корпус. Нитриды хрома диффундируют на большую глубину, чем нитриды алюминия. Молибден увеличивает закаливаемость, улучшает зернистость и повышает ударную вязкость сердечника.

В этом процессе можно напрямую использовать цапфы, отшлифованные до их окончательного размера, так как после азотирования не происходит закалки, что позволяет избежать деформации в отличие от других процессов поверхностного упрочнения.Низкая скорость проникновения через поверхность увеличивает стоимость процесса, например, для изготовления корпуса глубиной около 0,2 мм требуется 20 часов.

(c) Процесс карбонитрирования и поверхностного упрочнения.

Tufftride ’- это самый известный процесс карбонитрирования в соляной ванне. Коленчатый вал погружается в ванну с расплавом солей при температуре около 853 К на относительно короткий цикл, составляющий два-три часа. При этом углерод и азот отделяются от солей и диффундируют на поверхность.Поскольку азот более растворим в железе, чем углерод, он диффундирует дальше в материал. На поверхности образуются твердые карбиды железа и вязкие нитриды железа, в результате чего значительно повышается устойчивость к износу, истиранию (отслаиванию поверхности), заеданию и коррозии.

В зависимости от используемой стали этот внешний слой имеет глубину заклинивания от 6 до 16 с твердостью от 400 до 1200 DPN. Под этим внешним слоем избыточный азот переходит в твердый раствор с железом, благодаря чему он укрепляется.Эта внутренняя диффузионная зона образует барьер, предотвращающий распространение трещин, ведущих к усталостному разрушению.

Эта поверхностно-упрочняющая обработка, также известная как мягкое азотирование МАХОВИКА, становится все более популярной как для сталей, так и для чугунов, и ожидается, что она заменит другие более дорогие процессы для компонентов с использованием простых углеродистых сталей, требующих твердости поверхности и коррозионной стойкости. Этот процесс намного быстрее и дешевле и дает свойства, аналогичные азотированию, но обычно глубина твердости меньше, что может стать проблемой, если вал должен быть переточен.

.

Коленчатый вал - x-engineer.org

Коленчатый вал - подвижная часть двигателя внутреннего сгорания (ДВС). Его основная функция - преобразовывать поступательное движение поршня во вращательное движение. Поршни соединены с коленчатым валом через шатуны. Коленчатый вал установлен внутри блока цилиндров.

Изображение: Кривошипный механизм двигателя (источник: Rheinmetall)

  1. Поршни
  2. Шатуны
  3. Маховик
  4. Коленчатый вал

Поршни, шатуны и коленчатый вал вместе образуют кривошипно-шатунный механизм .

Вторичная функция коленчатого вала - передача мощности другим системам двигателя:

  • фаз газораспределения
  • масляный насос
  • охлаждающий (водяной) насос
  • компрессор кондиционера
  • генератор переменного тока и т. Д. Коленчатый вал с коваными противовесами

    Коленчатый вал крепится к блоку двигателя через его основные шейки. Шатуны закреплены на шатунных шейках коленчатого вала. На противоположных сторонах шейки шатуна коленчатый вал имеет противовесы, которые компенсируют внешние моменты, минимизируют внутренние моменты и, таким образом, уменьшают амплитуды вибрации и напряжения в подшипниках.. На одном конце коленчатого вала соединен маховик, а на другом конце - зубчатая передача.

    Изображение: Описание коленчатого вала двигателя (источник: Rheinmetall)

    1. Сторона управления или сторона привода
    2. Противовесы
    3. Коренная шейка подшипника
    4. Шатунная шейка
    5. Сторона маховика / передача усилия
    6. Масляный канал

    Количество Коренные шейки и шатунные шейки зависят от количества цилиндров и типа двигателя (V-образный, прямой и т. д.)). Как на главной шейке, так и на шатунных шейках коленчатый вал имеет отверстия для смазки (масляный канал), через которые масло течет при работе двигателя.

    Изображение: Коленчатый вал ДВС с привинченными болтами противовесами

    Крутящий момент двигателя не является непрерывным, поскольку он создается только тогда, когда каждый поршень находится в цикле расширения. За счет этого на коленчатый вал устанавливается маховик для сглаживания крутящего момента двигателя и уменьшения вибраций.

    На V-образном двигателе на одинаковых шатунных шейках установлены два шатуна.Благодаря такому расположению V-образный двигатель с таким же количеством цилиндров более компактен, чем прямой двигатель. Длина двигателя V6 короче, чем длина прямого 6-цилиндрового двигателя (L6).

    Изображение: Анимация кривошипно-шатунного механизма ДВС (щелкните по нему)

    Между коленчатым валом и блоком двигателя, на коренных шейках, установлены подшипники коленчатого вала. Их роль заключается в уменьшении трения через слой антифрикционного материала, который контактирует с опорами блока цилиндров.

    Коленчатый вал выпускается двух типов: литой и кованый . Противовесы можно также наделать непосредственно на коленчатый вал или прикрутить (закрепить болтами с резьбой).

    Все поршни двигателя внутреннего сгорания передают свои силы на коленчатый вал. С механической точки зрения коленчатый вал должен выдерживать высокие крутящие усилия, изгибающие усилия, давление и вибрации.

    Для любых вопросов или замечаний относительно этого руководства, пожалуйста, используйте форму комментариев ниже.

    Не забывайте ставить лайки, делиться и подписываться!

    .

    Смотрите также