Как вычислить тормозной путь поезда


V. Определение тормозного пути поезда

Тормозным путём называется расстояние проходимое поездом за время прошедшее от момента перевода ручки крана машиниста или стоп-крана в тормозное положение до полной остановки поезда. Тормозной путь поезда определяется как сумма подготовительного и действительного пути:

 

,

 

где - подготовительный путь, - действительный путь.

,

где - скорость поезда в начальный момент торможения, - время подготовки тормозов в действие , при автостопном торможении общее время подготовки увеличивается на .

- начальные и конечные скорости поезда на принятом расчетном интервале скоростей, - замедление поезда под действием замедляющей силы , - удельная тормозная сила равная для каждого интервала скоростей , где - расчётный тормозной коэффициент поезда, - расчётный коэффициент трения при средней скорости на выбранном интервале скоростей, для композиционных .

Основное удельное сопротивление движению поезда при езде без тяги для прицепных:

 

,

 

для головных:

 

.

 

Основное удельное сопротивление поезда равно:

 

 

где - масса головного вагона - масса моторного вагона.

Расчёт для интервала: 40-30 км/ч

 

0,3;

;

;

;

Расчёт для интервала: 30-20 км/ч

 

0,22;

;

;

 

;

 

Расчёт для интервала: 20-10 км/ч

 

0,23;

;

;

;

Расчёт для интервала: 10-0 км/ч

 

0,25;

;

;

;

.

Таблица 2.1

Vн (км/ч) Vк (км/ч) Vср (км/ч) φкр bt ϖо" ϖх" ϖох" bt+ ϖох"+i 4,17( Vн-Vк) ΔSd Sd St
0,2144 143,65 1,98 2,15 226,52 365,18 7,99 19,33 0,08
0,22 150,7 1,72 1,82 194,45 340,20 6,12 11,33  
0,23 160,0 1,51 1,54 167,4 322,4 3,87 5,210  
0,25 172,6 1,34 1,31 145,4 313,16 1,33 1,33  

Рис. 1 Отношение средней скорости вагонов от пройденного пути во время торможения.

VI. Вычисление замедления и времени торможения

 

Для оценки эффективности действия тормозов используется величина среднего замедления, реализованная при торможении и определяемая из уравнения сохранения энергии замедляющего поезда

,

где - скорости в начале и в конце расчётного интервала, - длина участка пути найденная на данном расчётном интервале.

 

Таким образом величина среднего замедления представляет собой удельную кинетическую энергию поезда, которая гасится его тормозной системой на единице длины тормозного пути.

 

Время торможения поезда представляет собой сумму времени подготовки тормозов к действию и действительного времени торможения

 

;

 

Расчёт для интервала: 40-30 км/ч

;

.

Расчёт для интервала: 30-20 км/ч

;

.

Расчёт для интервала: 20-10 км/ч

;

.

Расчёт для интервала: 10-0 км/ч

;

.

 

 

Таблица 2.2

Vн (км/ч) Vк (км/ч) Vср (км/ч) ΔSd
27,006 7,99 3,37 2,777 0,82 3,594
19,290 6,12 3,14 2,777 0,88 2,77  
11,57 3,87 2,98 2,777 0,93 1,88  
3,85 1,33 2,8 2,777 0,95 0,95  

 

 

 

Рис. 2 Зависимость времени торможения вагонов от средней скорости.

 

 

 

Рис. 3 Зависимость замедления вагонов от средней скорости.

 

 

Заключение

 

В результате выполнения курсовой работы был произведён расчёт колодочного тормоза, определён диаметр тормозного цилиндра. По полученным значениям определили тип воздухораспределителя и объем запаса резервуара. Определили тормозной путь поезда, вычислили замедление и время торможения. По полученным значения был построен график зависимости времени торможения вагонов от средней скорости. Замедления вагонов от средней скорости, а так же отношение средней скорости вагонов от пройденного пути во время торможения

 

Список литературы

1. В. А. Раков «Локомотивы и моторвагонный подвижной состав железных дорог Советского Союза 1976—1985», 1990

2. Руководство по эксплуатации вагонов метрополитена моделей 81-717и 81-714 / Акционерное общество «Метровагонмаш». — Москва: Транспорт, 1995. — 447 с.

3. Анисимов П.С. (ред.). Расчет и проектирование пневматической и механической частей тормозов вагонов. Учебное пособие. - М.: Маршрут, 2005. - 248 с.

 


Читайте также:


Рекомендуемые страницы:

Поиск по сайту



Поиск по сайту:

Определение длины тормозного пути - Страница 2

Страница 2 из 2

Тормозной путь определяют исходя из скорости движения, расчетного тормозного нажатия н профиля пути С помощью расчетных номограмм тормозного пч'ти при экстренном торможении определяют одно из четырех условий процесса торможения при заданных трех основных (тормозной путь, максимальная начальная скорость торможения, коэффициент расчетного тормозного нажатия, уклон). При расчете тормозного пути полного служебного торможения удельную тормозную силу уменьшают на 20%.
Таблица 247 Формулы для расчета длины тормозных путей и величины замедления поезда


Примечания I Номограммы величины тормозного пути в зависимости от расчетного тормозного коэффициента и скорости в начале торможения приведены для грузовых поездов на рис 315 и 316 и для пассажирских — на рис. 317 и 318.

  1. Номограмма величины тормозного пути в зависимости от скорости движения и среднее замедления поезда приведена на рис. 319.
  2. Величина среднего замедления представляет собой удельную кинетическую энергию, приходящуюся на единицу массы, которая гасится тормозной системой на единице длины тормозною пути:

для пассажирских и моторвагонных поездов на площадке  для грузовых и пассажирских поездов

где ?τ — время от начала торможения до полной остановки поезда

  1. Расчетный коэффициент сцепления колес с рельсами определяют по формуле


где о — средняя нагрузка от колесной пары на рельсы Значение функции скорости см на рис 320
Таблица 248. Величина замедления ς, км/ч2 под действием удельной замедляющей силы 1 кгс/т


Подвижной состав

Замедление

Грузовые и пассажирские поезда Одиночно следующие локомотивы:

120

паровозы

121

тепловозы

114

электровозы

107

Электропоезда

119

Дизель-поезда

116


Рис. 315. Номограмма величины тормозного пути грузового поезда при чугунных колодках:
а — на площадке, б -на спуске 0,006, в — на спуске 0,010

Рис. 316. Номограмма величины тормозного пути грузового поезда при композиционных тормозных колодках: а — на площадке; б — на спуске 0,006; в — на спуске 0,010

Рис. 317. Номограмма величины тормозного пути пассажирского поезда при чугунных тормозных колодках (сплошные линии — электропневматическое торможение, штриховые — пневматическое):
а — на площадке, б — на спуске 0,006, в — на спуске 0,010

Рис. 318. Номограмма величины тормозного пути пассажирского поезда при композиционных тормозных колодках (сплошные линии — электропневматическое торможение, штриховые — пневматическое):  а — на площадке; б — на спуске 0,006, в — на спуске 0,010


Рис. 319. Номограмма величины тормозного пути в зависимости от скорости и замедления поезда на площадке

Таблица 249. Формулы для определения времени подготовки тормозов к действию


Тип поезда

Время подготовки tп, с

Грузовой состав длиной до 200 осей при пневматических тормозах


1 При срабатывании автостопа время подготовки тормозов к действию увеличивается на 12 с
Таблица 250. Формулы для определения коэффициентов трения тормозных колодок о колесо

Таблица 251. Расчетный коэффициент трения тормозной колодки о колесо

Примечание Действительный коэффициент трения тормозной колодки о колесо определяется по формулам:  где К — действительная сила нажатия тормозной колодки на колесо, тс.

Таблица 252. Расчетная сила нажатия тормозной колодки на колесо Кр в зависимости от действительной силы нажатия К

Примечание. Действительная сила нажатия тормозной колодки на колесо определяется по формуле K = Fpm\u, кгс, где h -площадь поршня тормозного цилиндра, см2, р — давление сжатого воздуха в тормозном цилиндре, кгс/см2; п — передаточное число рычажной передачи до колодки; нп — коэффициент полезного действия рычажной передачи (с учетом влияния усилия отпускной пружины).

Т а блица 253. Расчетный коэффициент сцепления, принимаемый для проверки отсутствия заклинивания колесных пар и рекомендуемый при проектировании тормозного оборудования


Расчетная скорость, км/ч

Расчетный коэффициент сцепления при нагрузке от колесной пары на рельсы, тс

6

10

15

20

25

Пассажирские, изотермические вагоны, вагоны электро-  и дизель-поездов

 

 

 

 

 

40

0,140

0,135

0,130

0,124

__

120

0,110

0,107

0,102

0,097

140

0,106

0,102

0,098

0,094

__

160

0,101

0,097

0,094

0,090

__

Грузовые вагоны

 

 

 

 

20

0,31

0,125

0,121

0,116

0,110

100

0,097

0,094

0,090

0,086

0,081

120

0,092

0,090

0,085

0,081

0,070

Локомотивы

20

__

0,132

0,126

0,119

100

_

0,097

0,093

0,088

160

0,087

0,083

0,078

Таблица 254. Тормозной путь, м, проходимый поездом при проверке действия тормозов с начальной скорости


Крутизна
спуска

Скорость, км/ч

40

60

80

100

120

0

125/250*

220/450

330/650

400/ —

555/ —

0,002

140/300

245/500

260/750

490/ —

620/ —

0,004

150/350

270/600

400/900

545/ —

695/ —

* Здесь и далее перед чертой — для пассажирских поездов, за чертой — для грузовых.
Таблица 255. Процент расчетного тормозного нажатия от максимального при ступенях торможения и чугунных тормозных колодках в грузовом поезде


Режим включения воздухораспределителя

Величина снижения давления в тормозной магистрали, кгс/см2

0,65

0,75

0,95

Порожний

65

75

90

Средний

45

57

75

Груженый

30

50

70


Рис. 320. Функция скорости для определения расчетного коэффициента сцепления колес с рельсами:
1 — пассажирский подвижной состав и вагоны на тележках пассажирского типа; 2 — локомотивы; 3 — грузовые вагоны

Рис. 321. Перепад давления Δρ в тормозной магистрали в зависимости от ее длины (м), утечки (л/мин), приходящейся на I м длины магистрали, и зарядного давления:
1 — 6,2 кгс/см2; 2 — 5,5 кгс/см2, 3 — 4,8 кгс/см2

Рис. 322. Зависимость величины зарядного давления в тормозной магистрали грузового поезда при установленном минимальном давлении в его хвостовой части от длины магистрали и равномерно распределенных утечек величиной:
1 — 2 л/мин · м; 2 — 1,4 л/мин · м; 3 — 1 л/мин м

  1. Графический способ определения диаметра калиброванного отверстия в зависимости От объема резервуара и времени истечения из него воздуха в атмосферу через калиброванное отверстие

Таблица 256. Определение времени истечения воздуха из резервуара в атмосферу (рис. 323, 324)


Рис. 323. Номограмма № 1 для определения отношения Vff в зависимости от объема Резервуара и диаметра отверстия


Рис. 324. Номограмма № 2 для определения времени истечения воздуха из резервуара в атмосферу через круглое отверстие в зависимости от отношения Vff (см. рис. 323)

4.2 Расчет тормозного пути поезда при экстренном торможении

При расчетах тормозной путь поезда принимаемравным сумме подготовительного и действительного путей торможения, м, по формуле 4.7:

Sт=Sп+Sд (4.7)

Подготовительный тормозной путьSп, м, определяем по формуле 4.8:

Sп=0,278Vmaxtп, (4.8)

где Vmax– скорость поезда в начале торможения (максимальная), км/ч;

tп– время подготовки тормозов к действию, с.

Vmax=70 км/ч.

При расчетах tп для грузового поезда до 300 осей принимаем формулу 4.9:

, (4.9)

где iс– приведенный уклон,0/00;

bm– удельная тормозная сила поезда при максимальной скорости, кгс/тс.

iс=80/00

Для уклона в выражении 4.9 берётся знак «+».

При экстренном торможении в формулу 4.9 подставляем bm=48,78 кгс/тс:

с

При служебном торможении в формулу 4.9 подставляем 0,8bm=39,024 кгс/тс:

с

Подставляем полученные значения в формулу 4.8. Для экстренного торможения:

Sп=0,278×70×12,15=236,44 м

Для служебного торможения:

Sп=0,278×70×13,756=247,142 м

Суммарный действительный тормозной путь (определяем по интервалам в 10 км/ч, таблица 4.1), м, определяем по формуле 4.10:

(4.10)

Рассчитаем действительный тормозной путь для первого интервала (0–10) км/ч при экстренном торможении:

м

Аналогично рассчитывается действительный тормозной путь при экстренном и при служебном торможениях для всех остальных интервалов.

Суммарный действительный тормозной путь при экстренном торможении рассчитывается как сумма полученных результатов по формуле 4.10:

м

Суммарный действительный тормозной путь при служебном торможении рассчитывается как сумма полученных результатов по формуле 4.10:

м

Полученные значения подставляем в формулу 4.7. Для экстренного торможения:

Sт=236,44+415,62=652,06 м

Для служебного торможения:

Sт=247,142+534,383=781,525 м

4.3 Расчет тормозного пути поезда при полном служебном торможении

Полученные в подпункте 4.2 значения полного тормозного пути при экстренном и полном служебном торможении сравниваем с нормируемыми (допустимыми) значениями по таблице 4.2.

Таблица 4.2. – Нормируемый тормозной путь для поезда

Вид поезда

Скорость поезда V, км/ч

Нормируемый тормозной путь, м

ic≤60/00

60/00≤ic≤100/00

Грузовой

Менее 80

1000

1200

80-90

1300

1500

90-100

1600

2000

Пассажирский

Менее 100

1000

1200

100-140

1200

1300

140-160

1600

1700

Для заданных значений (Vmax=70 км/ч,ic=8‰) нормируемый тормозной путь составляет 1000м, т.о. расчетные значения тормозного пути при экстренном и полном служебном торможении соответствуют допустимым.

График зависимости пути при экстренном и полном служебном торможении от скорости движения поезда приведен в приложении Б.

5 Результаты расчетов на пэвм

Таблица 5.1- Формирование поезда

Определение веса состава

Весовая доля в составе вагонов по типу подшипникового узла:

подшипники скольжения, β1

подшипникикачения, β2

1,000

Основное удельное сопротивление движению локомотива , кгс

2,928

Основное сопротивление движению состава, кгс/тс

1,112

Расчетный вес состава,тс

5241,009

Удельное сопротивление троганию состава с места , кгс/тс;

1,000

Вес состава по условию трогания с места

,тс

8757,333

Определение числа вагонов в составе

Количество вагонов:

грузового поезда, 4-осные

31,196

грузового поезда, 4-осные

14,558

грузового поезда, 8-осные

4,679

Таблица 5.2 – Назначение типов вагонов

Вес полученного состава,тс

5282

Разница между весом полученного состава и расчетным весом , тс

40,991

Длина поезда , м

841,2

, м

358,8

«Условие по длине выполнено. Во всех дальнейших расчетах принимается вес состава , полученный в этом столбце»

Таблица 5.3 – Обеспечение поезда тормозами

Расчет рычажной тормозной передачи вагона

Площадь поршня тормозного цилиндра ,см2

995,382

Продолжение таблицы 5.3

Усилие отпускной пружины , кгс

224,4

Реактивное усилие возвратной пружины авторегулятора , кгс

231,923

Общее передаточное число рычажной передачи

8,961

Действительная суммарная сила нажатия на все тормозные колодки вагона , кгс

30148,351

Коэффициент силы нажатия на тормозные колодки вагона

0,355

Усилие по штоку поршня тормозного цилиндра , кгс

3738,218

Оценка обеспеченности поезда тормозами

Число вагонов той же осности, что и рассчитываемый вагон, n

32

Осность рассчитываемого вагона

4

Расчетная сила нажатия на ось локомотива , тс

5

Потребный тормозной коэффициент грузового поезда

0,3

Суммарное число осей вагонов, рассчет которых не производился, n0

122

Фактический тормозной коэфициент для грузового поезда

0,31

«Поезд тормозами обеспечен»

Таблица 5.4 – Проверка поезда на возможность разрыва при экстренном торможении

Суммарная действительная сила нажатия на все тормозные колодки состава , кгс

610000,000

Суммарная действительная сила нажатия на тормозные колодки локомотива, кгс

1024747,328

Коэффициент трения тормозных колодок вагонов при Vmax

0,273

Коэффициент трения тормозных колодок вагонов при Vmin

0,315

Коэффициент трения тормозных колодок локомотива при Vmax

0,102

Коэффициент трения тормозных колодок локомотива при Vmin

0,15

Максимальные продольно-динамические усилия для сжатого поезда R1при Vmax

9433

Максимальные продольно-динамические усилия для сжатого поезда R2при Vmin

12036

Максимальные продольно-динамические усилия для растянутого поезда R3при Vmax

15328

Максимальные продольно-динамические усилия для растянутого поезда R4при Vmin

19558

Таблица 5.5- Результаты расчёта замедляющих усилий (расчёт на ПЭВМ)

 

Интервал скорости Vн –Vк

Vmax

0-10

10-20

20-30

30-40

40-50

50-60

60-70

70

1

2

3

4

5

6

7

8

9

Vср,км/ч

5

15

25

35

45

55

65

70

х,, кгс/тс

2,464

2,644

2,894

3,214

3,604

4,064

4,594

4,885

Рх, кгс

679,995

729,675

798,675

886,995

994,635

1121,6

1267,88

1348,26

, кгс/тс

0,972

1,039

1,13

1,244

1,382

1,543

1,728

1,819

, кгс

5135,02

5488,16

5966,3

6569,46

7297,62

8150,79

9128,96

9609,467

, кгс

5815,01

6217,83

6764,98

7456,45

8292,25

9272,38

10396,8

10957,727

, кгс/тс

1,046

1,119

1,217

1,342

1,492

1,668

1,871

1,972

0,349

0,33

0,315

0,303

0,293

0,284

0,276

0,273

0,227

0,177

0,15

0,133

0,12

0,112

0,105

0,102

,тс

212,738

201,3

192,15

184,664

178,425

173,146

168,621

166,593

,тс

232,413

181,819

153,712

135,826

123,443

114,362

107,418

104,524

, тс

445,15

383,119

345,862

320,489

301,868

287,508

276,039

271,117

bm, кгс/тс

80,092

68,931

62,228

57,663

54,312

51,729

49,665

48,78

0,8bm, кгс/тс

64,073

55,145

49,782

46,13

43,45

41,383

39,732

39,024

bm + ох-ic, кгс/тс

74,138

63,05

56,445

52,004

48,804

46,397

44,536

43,751

0.8bm + ох-ic, кгс/тс

58,12

49,264

43,999

40,472

37,942

36,051

34,603

33,995

Δ, м

5,619

19,822

36,903

56,076

76,825

98,769

121,606

 

Δ, м

7,168

25,37

47,342

72,055

98,82

127,114

156,514

 

Таблица 5.6 –Расчет тормозного пути при экстренном торможении

Время подготовки тормозов к действию при экстренном торможении, с

12,153

Подготовительный тормозной путь при экстренном торможении , м

236,488

Действительный тормозной путь при экстренном торможении , м

415,621

Тормозной путь при экстренном торможении

, м

652,110

Таблица 5.7– Расчет тормозного пути при полном служебном торможении

Время подготовки тормозов к действию при экстренном торможении, с

12,691

Подготовительный тормозной путь при экстренном торможении, м

246,96

Действительный тормозной путь при экстренном торможении , м

534,381

Тормозной путь при экстренном торможении

, м

781,342

«Тормозной путь в норме. Расчет закончен»

Определение длины тормозного пути — Студопедия

В зависимости от заданной максимальной (начальной) скорости движения, силы нажатия тормозных колодок и профиля пути.

Задачи по определению длины тормозного пути и времени торможения решаются при заданных :

· начальной скорости торможения vн,

· на участке торможения профиле пути i,

· тормозных средств поезда ,

· необходимых сведений о поезде.

Задача по определению длины тормозного пути решается аналитическим или графическим способами.

При решении тормозных задач аналитическим способом по интервалам скоростей полный тормозной путь Sт определяется как сумма двух составляющих:

, (1)

где Sп – подготовительный тормозной путь

Sд – путь действительного торможения

Тормозной путь условно делят на подготовительный Sп и действительный Sд. Диаграмма наполнения тормозных цилиндров в грузовом поезде при экстренном торможении приведена на (рисунок 3). С целью упрощения тормозных расчётов в области неустановившегося режима действия тормозной силы при её возрастании, действительные диаграммы наполнения тормозных цилиндров (линии 1-3) заменяются условной скачкообразной линией ОСДВ, принимаемой одинаковой для всех тормозных цилиндров. При этом предполагается, что во время прохождения поездом пути подготовки тормозов к действию – tп (линия О-С), давление во всех тормозных цилиндрах поезда равно нулю, а скорость поезда не изменяется. После этого давление в тормозных цилиндрах возрастает скачком (линия С-Д) и далее остаётся постоянным.


Время подготовки тормозов к действию зависит от длины поезда, типа тормозов, типа воздухораспределителя и режима его работы, так как от этого зависит характер и наклон диаграммы наполнения, а также от тормозной силы и уклона, на котором происходит подготовка тормозов к действию. В расчётах во время подготовки тормозов к действию скорость движения принимается постоянной, а фактически она возрастает или убывает в зависимости от уклона и тормозной силы.

Рисунок 3. Определение пути подготовки тормозов к действию.

 

Время подготовки тормозов к действию в секундах определяется по формуле

с, (2)

где a, c – коэффициенты, зависящие от типа поезда (грузовой или пассажирский), типа тормозов (пневматический или электропневматический) и числа осей;

bт – удельная тормозная сила поезда, Н/кН;

i – профиль пути, на котором находится поезд при подготовке тормозов к действию, в ‰ со своим знаком.


После определения определяется путь подготовки тормозов к действию

, м, (3)

где - скорость, с которой начинается торможение, км/ч.

Действительный тормозной путь при прохождении поездом рассматриваемого интервала скорости торможения (интервалы 5 – 10 км/ч), расчёты производят по выражению

, м, (4)

где и - начальная и конечная скорости на принятом интервале, км/ч; - тормозной путь, проходимый поездом за время снижения скорости от до , м; - (дзета) приведённое «единичное» ускорение поезда, км/ч2/кг/т, или - удельная приведённая (с учётом инерционных сил) масса поезда ; - удельная тормозная сила, Н/кН; i – уклон, численная величина которого соответствует размерности Н/кН; если поезд движется на подъёме, то величина i в формуле с плюсом, если поезд на спуске, то величина i в формуле с минусом ; - удельное сопротивление движению поезда, Н/кН, вычисляется при средней скорости рассматриваемого интервала

км/ч. (6)

Действительный тормозной путь

м. (7)

Полный тормозной путь до конца принятого интервала скорости торможения

(8)

Время, затраченное поездом при прохождении рассматриваемого интервала скорости, рассчитывается по формуле

с . (9)

Общее время, затраченное поездом на торможение, рассчитывается как сумма времени по всем рассмотренным составляющим пути торможения

с. (10)

Расчёт тормозного пути по интервалам скорости удобно выполнять в форме таблице 3, в качестве первой строки занеся путь подготовки.

Расчёт тормозного пути по интервалам скорости

Таблица 3

 

Здесь - тормозной путь, пройденный с момента торможения до окончания данного интервала;

- время, прошедшее с момента начала торможения до окончания изменения скорости в данном интервале.

По результатам расчёта строятся графики зависимости и .

 

Пример 3. Определить тормозной путь, проходимый грузовым поездом при начальной скорости 60 км/ч до полной остановки на спуске величиной 5,4 ‰, если дано:

основное удельное сопротивление движению состава:

;

расчётный тормозной коэффициент чугунных колодок в поезде ;

расчётный тормозной коэффициент композиционных колодок в поезде ;

масса состава т;

масса локомотива т;

число осей состава nо=124;

единичное ускорение поезда

поезд двигался по участку, на котором имеются уклоны круче 20 ‰.

Р е ш е н и е. 1. Определение удельной тормозной силы при начальной скорости:

;

;

Н/кН;

Н/кН;

общая (суммарная) удельная тормозная сила поезда равна

Н/кН.

2. Определение времени подготовки тормозов к действию:

с.

3. Определение пути подготовки тормозов к действию:

м.

Результаты расчётов вносятся в первую строку таблицы 9.4.

4. Определение тормозного пути, проходимого поездом в режиме действительного торможения первого интервала снижения скорости на 10 км/ч:

средняя скорость на первом интервале составит

км/ч.

значения расчётных коэффициентов трения чугунных и композиционных колодок при средней скорости 55 км/ч

;

;

удельные тормозные силы, создаваемые чугунными и композиционными колодками равны

Н/кН;

Н/кН;

общая удельная тормозная сила поезда

Н/кН;

Основное удельное сопротивление движению состава

Н/кН;

основное удельное сопротивление движению локомотива в режиме холостого хода

Н/кН.

основное удельное сопротивление движению поезда

Н/кН.

тормозной путь, проходимый в рассматриваемом интервале изменения скорости, равен

м.

5. Тормозной путь, пройденный с момента начала торможения до окончания изменения скорости в данном интервале

м.

6. Время, затраченное поездом на снижение скорости в данном интервале

с.

Время торможения, прошедшее с момента начала торможения до окончания изменения скорости в данном интервале

с.

Аналогично заполняются остальные графы табл. 9.4.

Необходимо иметь в виду, что при скоростях движения поезда 10 км/ч и менее основное удельное сопротивление движению следует принимать как при скорости 10 км/ч.

 

Результаты расчёта представлены на графиках скорости и времени торможения поезда (рисунке 4).

Рисунок 4. Определение тормозного пути.

 

Расчет тормозного пути Методом ПТР.

Расчет тормозного пути Методом ПТР.

Полный тормозной путь Sт, проходимый поездом от начала торможения до остановки, принимается равным сумме пути подготовки тормозов к действию Sп и действительного пути торможения Sд.

 

Sт

=

Sп

+

ΣSд

 

 

( 1.11 )

 

 

Величина пути подготовки тормозов к действию определяется по формуле

 

Sп

=

Vнт * tп

,

 

 

 

( 1.12 )

3.6

 

 

 

 

где:

Vнт - скорость поезда в момент начала торможения, км/ч;

tп - время подготовки тормозов поезда к действию, с;

3.6 – переводной коэффициент.

 

         Время подготовки тормозов к действию определяется из условия замены медленного, реального процесса наполнения тормозного цилиндра среднего вагона, мгновенным наполнением до полной величины, при условии равенства тормозных путей, проходимых поездом при реальном и условном наполнении тормозных цилиндров (рис. 1.6).

В зависимости от рода подвижного состава и его длины время подготовки тормозов к действию определяется по формуле

 

tп

= а - б

iс

 

 

 

 

( 1.13 )

bп

 

 

 

где:

iс  - спрямленный уклон;

bп   - удельная тормозная сила.

 

Величины коэффициентов а и б зависят от рода движения, вида управления тормозами в пассажирском поезде, от длины поезда в осях и принимаются по таблице (1.2).

Величина действительного пути торможения определяется суммированием величин пути торможения в выбираемых интервалах скорости при условии постоянства величин удельных сил, действующих на поезд в этом интервале, по формуле 1.14

 

Sд

=

4.17[(Vн)2 – (Vк)2]

,

 

 

 

( 1.14 )

bт + wox + iс

 

 

 

 

где:

Vн, Vк - начальная и конечная скорости поезда в принятом интервале скоростей, км/ч;

bт - удельная тормозная сила, кг/т;

wox - удельное основное сопротивление движению поезда, кг/т;

iс - спрямленный уклон, ‰.

Таблица 1.2.

Зависимость коэффициентов а и б от типа поезда

Условия выбора величины коэффициента

а

б

Пассажирский поезд :

 

 

С пневматическими тормозами

4

5

С электропневматическими тормозами

2

3

Грузовой поезд длиной :

 

 

до 200 осей

7

10

до 300 осей

10

15

до 400 осей

12

18

до 400 осей, если все ВР усл. № 483

6

8

 

Удельная тормозная сила определяется по формуле

 

bт

= 1000 *

φкр *

υр

 

,

 

( 1.15 )

 

где:

υр - расчетный тормозной коэффициент поезда. Он показывает сколько тонн нажатия тормозных колодок приходится на одну тонну веса поезда;

φкр - расчетный коэффициент трения тормозных колодок.

 

         Расчетный тормозной коэффициент поезда с учетом веса и нажатия локомотива вычисляется по формуле

 

υр

=

Крл + Крв

,

 

 

 

( 1.16 )

P + Q

 

 

 

где:

Крл, Крв - сумма расчетных сил нажатия тормозных колодок локомотива и вагонов, т;

Р - вес локомотива;

Q - вес состава.

 

         Сумма расчетных сил нажатия тормозных колодок поезда подсчитывается по формуле или берется из справки формы БУ-45

 

Кр

=

n1р1*m1

+

n2р2*m2

+

n3р3*m3 + …….

( 1.17 )

 

где:

niколичество однотипных вагонов, оборудованных однотипными колодками;

К – расчетное тормозное нажатие на колодку;

miколичество колодок на единице подвижного состава.

 

При определении тормозного коэффициента грузового груженого поезда на спусках до 20 ‰ вес локомотива и нажатие его колодок не учитываются.

Расчетное значение коэффициента трения чугунных колодок определяем по формуле

 

φкр

= 0.27

V + 100

 

 

 

 

( 1.18 )

5V + 100

 

 

 

 

 

         Основное удельное сопротивление движению поезда при холостом ходе локомотива может быть подсчитано по формуле

 

Wox

=

Wo*Q + Wx*P

,

 

 

 

( 1.19 )

P + Q

 

 

 

 

где:

Woосновное удельное сопротивление движению вагонов;

Wxосновное удельное сопротивление движению локомотива на   холостом ходу.

Wx

=

2.4

+

0.11*V

+

0.00035*V2

( 1.20 )

         Основное удельное сопротивление движению, например, грузовых вагонов:

 - порожние четырехосные на роликовых подшипниках при осевой нагрузке g ≤ 6 т/ось

Wо

=

1.0

+

0.044*V

+

0.00024*V2

( 1.21 )

 - груженые четырехосные на роликовых подшипниках при осевой нагрузке g > 6 т/ось

Wо

= 0.7 +

3 + 0.1*V + 0.00025*V2

 

 

 

 

( 1.22 )

g

 

 

 

 

Для остальных видов вагонов расчетные формулы приведены в Правилах тяговых расчетов для поездной работы (ПТР).

Величина сопротивления от пути ic  подставляется в формулы в виде суммарного значения сопротивления от уклона элементов профиля пути с учетом сопротивления от кривой на участке, равном длине поезда плюс ожидаемая длина тормозного пути

iс

=

i1*l1 + i2*l2 + i3*l3 + …. + in*ln

,

 

 

 

( 1.23 )

L + Sт

 

 

 

 

где:

i – значения уклонов элементов профиля пути, ‰;

l – длина элементов профиля пути, м;

L – длина поезда, м;

S – ожидаемый тормозной путь, м.

         Пример. Имеется некоторый участок пути со следующим профилем

         Спрямленный уклон для этого участка пути составит:

iс

=

3*150+4*300-1.5*400-2*350+5*250+2.5*150

=

0.7

 

 

 

150+300+400+350+250+150

 

 

 

 

         Результаты расчетов тормозного пути сводятся в табл. 1.3.

Таблица 1.3.

Vн

Vк

Vср

Ψ

bт

Wox

iс

Sд

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Действительный тормозной путь при автостопном торможении определяется так же, как при экстренном торможении, а время подготовки тормозов к действию рассчитывают с учетом дополнительных 12 секунд необходимых для срабатывания ЭПК автостопа.

По этой методике можно рассчитать тормозной путь любого поезда при полных торможениях.

Сайт управляется системой uCoz

Определение тормозного пути поезда и построение графика зависимости его длины от скорости

поезд тормозной путь скорость

Тормозным путем называется расстояние, проходимое поездом от момента перевода ручки крана машиниста или стоп-крана в тормозное положение до полной остановки поезда.

Тормозной путь поезда условно определяется, как сумма подготовительного пути S п и действительного пути торможения S д, т.е.

 

 

где  - скорость поезда в момент начало торможения, км/ч;

 - время подготовки тормозов к действию, с;

 - начальная и конечная скорость поезда в принятом расчетном интервале скоростей;

 - замедление поезда в км/ч2 под действием замедляющей силы, 1 Н/т (принимается для грузовых поездов 12 км/ч2);

 - удельная тормозная сила, Н/т;

 - основное удельное сопротивление движению поезда при средней скорости в каждом интервале при езде без тока, Н/т;

- удельная замедляющая или ускоряющая сила от приведенного значения уклона с учетом сопротивления и кривой, Н/т (принимается со знаком «+» для подъема, «-» для спуска).

Условно принимают, что при подготовке тормоза к действию сжатый воздух в тормозной цилиндр не поступает и поэтому, скорость движения поезда за время подготовки тормоза не изменяется. Зато действительное торможение обусловлено мгновенным увеличением тормозной силы.

Время подготовки тормозов к действию в секундах определяется при экстренном и полном служебном торможении для грузовых поездов длиной более 300 осей

 

,

 

где  - средняя удельная тормозная сила поезда, Н/т * ic - удельная сила от уклона, ic =10 i

b т=10000*0,288*0,264=760,32

 

=12+ =12.95c

,

 

где  - основное сопротивление грузового состава в Н/т;

 - соответственно массы локомотива и состава, т;

 - удельное сопротивление локомотива в Н/т на холостом ходу,

;

,

 

где  - соответственно доли 4- и 8-осных вагонов в составе по массе;

 - соответственно основное удельное сопротивление 4- и 8-осных грузовых вагонов;

 

, ,

 

где  - масса, приходящаяся на одну ось, т, соответственно 4- и 8-осных вагона.



 

b т=10000*0,288*0,264=760,32

=12+ =12.95c

S п= =305,76 м

Тогда при средней скорости 80 км/ч: , b т=10000*0,288*0,267=768,96

 

+ b т+ic=20.7+768.96-40=749.66

S д= = =86.77 м

Sт=S п+S д =305,76+86,77=392,53 м

 

Остальные данные внесём в таблицы №1,2

 

Таблица №1

V, км/ч b т , Н/т

t п , с

Sп, м Vср, км/ч b т , Н/т , Н/т , Н/т  
85 0,264 760.32 12,95

305,8

80 0,267 769 55,4 19,18
75 0,270 777.6 12,93

305,3

70 0,273 786,2 48,9 17,05
65 0,276 794.88 12,91

304,8

60 0,28 806,4 43,2 15,1
55 0,284 817.92 12,88

304,1

50 0,288 829,4 38,3 13,5
45 0,292 840.96 12,86

303,6

40 0,297 855,4 34 12
35 0,303 872.64 12,83

302,9

30 0,309 889,2 30,5 10,8
25 0,315 907.2 12,8

302,2

20 0,322 927,4 27,6 9,8
15 0,330 950.4 12,76

301,3

10 0,339 976,3 25,5 9
5 0,349 1005 12,72

300,3

2,5 0,354 1020 24,3 8,9
                     

 

Таблица №2

Н/т

Н/т

м

м

м            
20,7 749.7 85…75 66720 89 379.1 684.9
18,4 764.6 75…65 58380 76.4 290.1 595.4
16,4 782.8 65…55 50040 63.9 213.7 518.5
14,5 803.9 55…45 41700 51.9 149.8 453.9
13 828.4 45…35 33360 40.3 97.9 401.5
11,6 860.8 35…25 25020 29.1 57.6 360.5
10,6 898 25…15 16680 18.6 28.5 330.7
9,7 946 15…5 8340 8.8 9.9 311.2
9,2 989.2 5…0 1042 1.1 1.1 301.4

 

Вычисление замедления и времени торможения и построение графика зависимости величин замедления и времени торможения от скорости поезда

 

Для оценки эффективности действия тормоза используется величина среднего замедления , реализованная при торможении и определяемая из уравнения сохранения энергии, для движущегося в тормозном режиме поезда:

 

 

Таким образом, величина среднего замедления представляет собой удельную кинетическую энергию (приходящуюся на единицу массы) поезда, которая гасится его тормозной системой на единице длины тормозного пути.

Время торможения поезда представляет собой сумму времени подготовки тормоза к действию  и действительного времени торможения , т.е.

 

= = =0,694

= = =4.003c

 

Последующие расчётные данные представим в виде таблицы №3

 

Таблица №3

км/ч м/с2 м м/с2 с с

 

       

 

1

2

3 4 5 6

7

80

61,73

89 0,694 2,778 4.003

32.307

70

54,01

76,4 0,707 2,778 3.929

28.304

60

46,3

63,9 0,725 2,778 3.832

24.375

50 38,58

51,9

0,743 2,778

3.739

20.543
40 30,86

40,3

0,766 2,778

3.627

16.804
30 23,15

29,1

0,795 2,778

3,494

13.177
20 15,43

18,6

0,83 2,778

3,347

9.683
10 7,72

8,8

0,877 2,778

3,168

6.336
2,5 0,97

1,1

0,877 2,778

3.168

3.168
                 

 

Список используемой литературы

 

1. Смагин Б.В., Юдин В.А. Автоматические тормоза вагонов. Рабочая программа и задание на курсовой проект с методическими указаниями 14/8/3 - М.: Российский государственный открытый технический университет путей сообщения Российской Федерации, 2003 - 50 с.

2. Расчёт и проектирование пневматической и механической частей тормозов вагонов: Учебное пособие для вузов ж.д. транспорта / П.С. Анисимов, В.А. Юдин, А.Н. Шамаков, С.Н. Коржин; Под ред. П.С. Анисимова. - М.: Маршрут, 2005. - 284 с.

.   Иноземцев В.Г., Казаринов В.М., Ясенцев В.Ф. Автоматические тормоза. - М: Транспорт, 1981. - 464 с.

.   Инструкция по эксплуатации тормозов подвижного состава железных дорог. №ЦТ-ЦВ-ЦЛ-ВНИИЖТ/277 МПС РФ. М.: Трансинфо, 2002. - 160 с.


Рекомендуемые страницы:


Воспользуйтесь поиском по сайту:

Калькулятор (общего) пути остановки / торможения

Этот онлайн-калькулятор тормозного пути разработан для широкого спектра применений и может рассчитывать два из следующих пяти размеров - в зависимости от состояние дороги или трассы: тормозной путь и общий тормозной путь, время (торможение), начальная скорость, конечная скорость и ускорение / замедление. Кроме того, мышление расстояние тоже рассчитывается.

В этом калькуляторе не используются знакомые формулы.Расчет производится по точным формулам.

По умолчанию тормозной путь и общий тормозной путь рассчитываются для следующих условий: стартовая скорость 100 км / ч, проезжая часть должна быть сухой, чистой, плоский, прямой и герметичный. Время реакции - одна секунда.

>> Формулы для скорости, ускорения, времени и расстояния

В Условии вы найдете подходящие значения для автомобильных и железнодорожных транспортных средств.

* Измените состояние железной дороги или дороги в первом калькуляторе; предположение: все колеса заторможены.

** Возможны и отрицательные значения!

*** Значение двух сокращений l и h можно найти здесь: Общая информация.

Автомобиль едет по сухой ровной дороге через деревню. Его скорость составляет 50 км / ч. Вдруг на улицу прыгает ребенок.

  1. На каком расстоянии от ребенка должна находиться машина, чтобы она могла вовремя остановиться? Предполагается, что время реакции составляет одну секунду.
  2. Сейчас дорога мокрая. Какая скорость у машины во время аварии?
  3. Водитель незаконно проезжает по поселку на скорости 60 км / ч. Тормозной путь должен быть таким же, как в а). Какая скорость у машины, когда она наезжает? ребенок?
  4. Начальная скорость автомобиля - 50 км / ч, время реакции - две секунды. Какой тормозной путь автомобиль есть?

Ответ а)

В поле «Начальная скорость» вы должны ввести значение 50 вместо 100.Затем нажмите «Рассчитать» или клавишу Enter. Чтобы успеть вовремя, автомобиль должен находиться на расстоянии 24,812 м. от ребенка. Конечно, для правильного ответа необходимо соблюдать тормозной путь.

Ответ б)

Если вы хотите узнать скорость столкновения, калькулятор тормозного пути необходимо заполнить, как показано на скриншоте ниже:

После ввода значений не нажимайте кнопку «Рассчитать» сразу.Сначала измените условие на «Мокрая дорога» (щелкните маленькую стрелку). Результат 33 км / ч.

Ответ в)

Для этого расчета вам необходимо ввести значение 50 в поле «начальная скорость». Пусть все остальные значения как есть - затем выберите «Сухая проезжая часть». В этих условиях машина по-прежнему развивает скорость около 42 км / ч!

Ответ г)

Сначала сбросьте калькулятор.В качестве «Время реакции» выберите 2 и замените «Начальную скорость» на значение 50. Общий тормозной путь составляет 38,701 м, тормозной путь - 10,923 м. В разница между двумя числами дает расстояние реакции: 27,778 м.

В этом случае расстояние реакции уже больше, чем полный тормозной путь из пункта а). Так что машина на полной скорости врезается в препятствие!

Общий тормозной путь - это сумма тормозного пути и дистанции мышления. Общее время торможения складывается из времени реакции и времени торможения.

На следующей диаграмме вы можете найти расстояния h и l, которые необходимы для расчета опрокидывания транспортного средства.

Источник: Википедия, сайты производителей

* Источник: Bundeskanzleramt - RIS

Страница создана в ноябре 2015 года. Последнее изменение: 20.09.2020.

.

Тормозной путь, путь реакции и тормозной путь

Расстояние реакции

Расстояние реакции - это расстояние, которое вы пройдете от точки обнаружения опасности до момента начала торможения или поворота.

На дистанцию ​​реакции влияет

  • Скорость автомобиля (пропорциональное увеличение):
    • В 2 раза большая скорость = в 2 раза большее расстояние реакции.
    • В 5 раз больше скорости = в 5 раз больше расстояние реакции.
  • Время вашей реакции.
    • Обычно 0,5–2 секунды.
    • Лучшее время реакции в пробках у людей в возрасте 45–54 лет.
    • У молодых людей в возрасте 18–24 лет и старше 60 лет одинаковое время реакции на пробки. У молодых людей более острые чувства, но у пожилых людей больше опыта.

Дальность реакции может быть уменьшена на

  • Предвидение опасностей.
  • Готовность.

Дальность реакции может быть увеличена на

Простой метод: вычислить расстояние реакции

Формула: Удалите последнюю цифру скорости, умножьте на время реакции, а затем на 3.

Пример расчета при скорости 50 км / ч и времени реакции 1 секунда:

50 км / ч ⇒ 5
5 * 1 * 3 = 15 метров расстояние реакции

Более точный метод: вычислить расстояние реакции

Формула: d = (s * r) / 3,6

d = расстояние реакции в метрах (рассчитывается).
с = скорость в км / ч.
r = время реакции в секундах.
3,6 = фиксированное значение для преобразования км / ч в м / с.

Пример расчета при скорости 50 км / ч и времени реакции 1 секунда:

(50 * 1) / 3,6 = 13,9 метра расстояние реакции

Тормозной путь

Тормозной путь - это расстояние, которое проходит автомобиль от момента начала торможения до остановки.

На тормозной путь влияет

  • Скорость автомобиля (квадратичное увеличение; «в степени 2»):
    • Увеличение скорости в 2 раза = увеличение тормозного пути в 4 раза.
    • В 3 раза больше скорости = в 9 раз больше тормозной путь.
  • Дорога (уклон и условия).
  • Нагрузка.
  • Тормоза (состояние, тормозная техника и количество тормозных колес).

Рассчитать тормозной путь

Очень сложно добиться надежных расчетов тормозного пути, поскольку дорожные условия и сцепление шин могут сильно различаться. Тормозной путь может быть, например, в 10 раз больше, если на дороге лед.

Простой метод: вычисление тормозного пути

Условия: Хорошие и сухие дорожные условия, хорошие шины и хорошие тормоза.

Формула: Удалите ноль из скорости, умножьте это число на себя, а затем умножьте на 0,4.

Цифра 0,4 взята из того факта, что тормозной путь на скорости 10 км / ч в условиях сухой дороги составляет примерно 0,4 метра. Это было вычислено с помощью исследователей, измеряющих тормозной путь.Таким образом, в упрощенной формуле мы основываем наши расчеты на тормозном пути при 10 км / ч и увеличиваем его квадратично с увеличением скорости.

Пример расчета при скорости 10 км / ч:

10 км / ч ⇒ 1
1 * 1 = 1
1 * 0,4 = 0,4 метра тормозной путь

Пример расчета при скорости 50 км / ч:

50 км / ч ⇒ 5
5 * 5 = 25
25 * 0,4 = тормозной путь 10 метров

Более точный метод: вычисление тормозного пути

Состояние: Хорошая резина и хорошие тормоза.

Формула: d = s 2 / (250 * f)

d = тормозной путь в метрах (подлежит расчету).
с = скорость в км / ч.
250 = фиксированная цифра, которая используется всегда.
f = коэффициент трения, прибл. 0,8 на сухом асфальте и 0,1 на льду.

Пример расчета при скорости 50 км / ч по сухому асфальту:

50 2 / (250 * 0,8) = 12,5 метров тормозной путь

Тормозной путь

Тормозной путь = путь реакции + тормозной путь

Рассчитайте тормозной путь с помощью этих простых методов

Лето, дорога сухая.Вы едете со скоростью 90 км / ч на машине с хорошими шинами и тормозами. Вы внезапно замечаете опасность на дороге и резко тормозите. Какова длина тормозного пути, если время вашей реакции составляет 1 секунду?

Тормозной путь - это расстояние реакции + тормозной путь . Сначала рассчитываем расстояние реакции:

  • 90 км / ч ⇒ 9
  • .
  • 9 * 1 * 3 = 27 метров расстояние реакции

Затем рассчитываем тормозной путь:

  • 90 км / ч ⇒ 9
  • .
  • 9 * 9 = 81
  • 81 * 0.4 = 32 метра тормозной путь

Теперь оба расстояния объединены:

  • 27 + 32 = тормозной путь в метрах

Важное пояснение относительно расчетов

Различные методы дают разные ответы. Что мне использовать?
- Используйте то, что хотите. Различия настолько малы, что они не повлияют на ваш теоретический тест, так как разница между альтернативами довольно велика.

Итак, если есть альтернативы 10, 20, 40, 60, не имеет значения, получите ли вы 10 метров одним методом и 12.5 метров с другим - оба, очевидно, наиболее близки к 10, что, таким образом, является правильным ответом.

Последнее обновление 13.06.2019.

.

Формула тормозного пути с примерами

    • БЕСПЛАТНАЯ ЗАПИСЬ КЛАСС
    • КОНКУРСНЫЕ ЭКЗАМЕНА
      • BNAT
      • Классы
        • Класс 1-3
        • Класс 4-5
        • Класс 6-10
        • Класс 110003 CBSE
          • Книги NCERT
            • Книги NCERT для класса 5
            • Книги NCERT, класс 6
            • Книги NCERT для класса 7
            • Книги NCERT для класса 8
            • Книги NCERT для класса 9
            • Книги NCERT для класса 10
            • NCERT Книги для класса 11
            • NCERT Книги для класса 12
          • NCERT Exemplar
            • NCERT Exemplar Class 8
            • NCERT Exemplar Class 9
            • NCERT Exemplar Class 10
            • NCERT Exemplar Class 11
            • 9plar
            • RS Aggarwal
              • RS Aggarwal Решения класса 12
              • RS Aggarwal Class 11 Solutions
              • RS Aggarwal Решения класса 10
              • Решения RS Aggarwal класса 9
              • Решения RS Aggarwal класса 8
              • Решения RS Aggarwal класса 7
              • Решения RS Aggarwal класса 6
            • RD Sharma
              • RD Sharma Class 6 Решения
              • RD Sharma Class 7 Решения
              • Решения RD Sharma Class 8
              • Решения RD Sharma Class 9
              • Решения RD Sharma Class 10
              • Решения RD Sharma Class 11
              • Решения RD Sharma Class 12
            • PHYSICS
              • Механика
              • Оптика
              • Термодинамика
              • Электромагнетизм
            • ХИМИЯ
              • Органическая химия
              • Неорганическая химия
              • Периодическая таблица
            • MATHS
              • Статистика
              • Числа
              • Числа Пифагора Тр Игонометрические функции
              • Взаимосвязи и функции
              • Последовательности и серии
              • Таблицы умножения
              • Детерминанты и матрицы
              • Прибыль и убытки
              • Полиномиальные уравнения
              • Разделение фракций
            • Microology
            • 0003000
          • FORMULAS
            • Математические формулы
            • Алгебраные формулы
            • Тригонометрические формулы
            • Геометрические формулы
          • КАЛЬКУЛЯТОРЫ
            • Математические калькуляторы
            • 0003000
            • 000
            • 000 Калькуляторы по химии
            • 000
            • 000
            • 000 Образцы документов для класса 6
            • Образцы документов CBSE для класса 7
            • Образцы документов CBSE для класса 8
            • Образцы документов CBSE для класса 9
            • Образцы документов CBSE для класса 10
            • Образцы документов CBSE для класса 1 1
            • Образцы документов CBSE для класса 12
          • Вопросники предыдущего года CBSE
            • Вопросники предыдущего года CBSE, класс 10
            • Вопросники предыдущего года CBSE, класс 12
          • HC Verma Solutions
            • HC Verma Solutions Класс 11 Физика
            • HC Verma Solutions Класс 12 Физика
          • Решения Лакмира Сингха
            • Решения Лакмира Сингха класса 9
            • Решения Лахмира Сингха класса 10
            • Решения Лакмира Сингха класса 8
          • 9000 Класс
          9000BSE 9000 Примечания3 2 6 Примечания CBSE
        • Примечания CBSE класса 7
        • Примечания
        • Примечания CBSE класса 8
        • Примечания CBSE класса 9
        • Примечания CBSE класса 10
        • Примечания CBSE класса 11
        • Примечания 12 CBSE
      • Примечания к редакции 9000 CBSE 9000 Примечания к редакции класса 9
      • CBSE Примечания к редакции класса 10
      • CBSE Примечания к редакции класса 11
      • Примечания к редакции класса 12 CBSE
    • Дополнительные вопросы CBSE
      • Дополнительные вопросы по математике класса 8 CBSE
      • Дополнительные вопросы по науке 8 класса CBSE
      • Дополнительные вопросы по математике класса 9 CBSE
      • Дополнительные вопросы по науке
      • CBSE Вопросы
      • CBSE Class 10 Дополнительные вопросы по математике
      • CBSE Class 10 Science Extra questions
    • CBSE Class
      • Class 3
      • Class 4
      • Class 5
      • Class 6
      • Class 7
      • Class 8 Класс 9
      • Класс 10
      • Класс 11
      • Класс 12
    • Учебные решения
  • Решения NCERT
    • Решения NCERT для класса 11
      • Решения NCERT для класса 11 по физике
      • Решения NCERT для класса 11 Химия
      • Решения NCERT для биологии класса 11
      • Решение NCERT s Для класса 11 по математике
      • NCERT Solutions Class 11 Accountancy
      • NCERT Solutions Class 11 Business Studies
      • NCERT Solutions Class 11 Economics
      • NCERT Solutions Class 11 Statistics
      • NCERT Solutions Class 11 Commerce
    • NCERT Solutions for Class 12
      • Решения NCERT для физики класса 12
      • Решения NCERT для химии класса 12
      • Решения NCERT для биологии класса 12
      • Решения NCERT для математики класса 12
      • Решения NCERT, класс 12, бухгалтерия
      • Решения NCERT, класс 12, бизнес-исследования
      • NCERT Solutions Class 12 Economics
      • NCERT Solutions Class 12 Accountancy Part 1
      • NCERT Solutions Class 12 Accountancy Part 2
      • NCERT Solutions Class 12 Micro-Economics
      • NCERT Solutions Class 12 Commerce
      • NCERT Solutions Class 12 Macro-Economics
    • NCERT Solut Ионы Для класса 4
      • Решения NCERT для математики класса 4
      • Решения NCERT для класса 4 EVS
    • Решения NCERT для класса 5
      • Решения NCERT для математики класса 5
      • Решения NCERT для класса 5 EVS
    • Решения NCERT для класса 6
      • Решения NCERT для математики класса 6
      • Решения NCERT для науки класса 6
      • Решения NCERT для класса 6 по социальным наукам
      • Решения NCERT для класса 6 Английский язык
    • Решения NCERT для класса 7
      • Решения NCERT для математики класса 7
      • Решения NCERT для науки класса 7
      • Решения NCERT для социальных наук класса 7
      • Решения NCERT для класса 7 Английский язык
    • Решения NCERT для класса 8
      • Решения NCERT для математики класса 8
      • Решения NCERT для науки 8 класса
      • Решения NCERT для социальных наук 8 класса ce
      • Решения NCERT для класса 8 Английский
    • Решения NCERT для класса 9
      • Решения NCERT для класса 9 по социальным наукам
    • Решения NCERT для математики класса 9
      • Решения NCERT для математики класса 9 Глава 1
      • Решения NCERT для математики класса 9, глава 2
      • Решения NCERT
      • для математики класса 9, глава 3
      • Решения NCERT для математики класса 9, глава 4
      • Решения NCERT для математики класса 9, глава 5
      • Решения NCERT
      • для математики класса 9, глава 6
      • Решения NCERT для математики класса 9 Глава 7
      • Решения NCERT
      • для математики класса 9 Глава 8
      • Решения NCERT для математики класса 9 Глава 9
      • Решения NCERT для математики класса 9 Глава 10
      • Решения NCERT
      • для математики класса 9 Глава 11
      • Решения
      • NCERT для математики класса 9 Глава 12
      • Решения NCERT
      • для математики класса 9 Глава 13
      • NCER Решения T для математики класса 9 Глава 14
      • Решения NCERT для математики класса 9 Глава 15
    • Решения NCERT для науки класса 9
      • Решения NCERT для науки класса 9 Глава 1
      • Решения NCERT для науки класса 9 Глава 2
      • Решения NCERT для науки класса 9 Глава 3
      • Решения NCERT для науки класса 9 Глава 4
      • Решения NCERT для науки класса 9 Глава 5
      • Решения NCERT для науки класса 9 Глава 6
      • Решения NCERT для науки класса 9 Глава 7
      • Решения NCERT для науки класса 9 Глава 8
.

Основы транспортировки / расстояние видимости - Викиучебники, открытые книги для открытого мира

Из Wikibooks, открытые книги для открытого мира

Перейти к навигации Перейти к поиску
Ищите Основы транспортировки / расстояние видимости в одном из родственных проектов Викиучебника: Викиучебник не имеет страницы с таким точным названием.

Другие причины, по которым это сообщение может отображаться:

  • Если страница была создана здесь недавно, она может еще не отображаться из-за задержки обновления базы данных; подождите несколько минут и попробуйте функцию очистки.
  • Заголовки в Викиучебниках чувствительны к регистру , кроме первого символа; Пожалуйста, проверьте альтернативные заглавные буквы и подумайте о добавлении перенаправления сюда к правильному заголовку.
  • Если страница была удалена, проверьте журнал удалений и просмотрите политику удаления.
.

Калькулятор темпа и расстояния - Найдите свою скорость, расстояние и время

Рассчитайте темп, расстояние и общее время бега, ходьбы, езды на велосипеде, верховой езды или вождения. Темпы и расстояния рассчитываются как в милях, так и в километрах.

Найдите темп, используя время и расстояние

Найдите расстояние, используя темп и время

Найдите время, используя темп и расстояние



Как найти свой темп для марафона, бега на 5 или 10 км

Определить темп, с которым вам нужно бегать, чтобы определить время в вашей гонке, или вычислить свой шаг в гонке, легко, если у вас есть общее время бега и общая дистанция.Темп, также называемый «клип» или «шаг», является мерой скорости или, скорее, времени, необходимого для прохождения определенного расстояния.

Начните с преобразования времени работы в секунды. Это можно сделать, добавив секунды, минуты, умноженные на 60, и часы, умноженные на 3600.

Затем разделите общее время в секундах на общее расстояние. Это темп в секундах. Если расстояние указано в милях, то результат будет в миле, если расстояние в километрах, чем в километре.

Наконец, преобразуйте темп в секундах в формат часов, минут и секунд. Чтобы найти минуты, разделите количество секунд на 60. Минуты будут числами слева от десятичной точки. Чтобы найти количество секунд после определения минут, вычтите количество минут × 60 из темпа в секундах. Наш калькулятор преобразования времени в секунды может помочь преобразовать секунды в другой формат.

Пример: Если темп составляет 450 секунд на милю.


минут = 450 ÷ 60
минут = 7.5
минут = 7
секунд = 450 - (7 × 60)
секунд = 450-420
секунд = 30
время = 7:30

Как оценить, как далеко вы пробежали

Вы можете узнать пройденное расстояние, если знаете свой темп и общее время. Чтобы рассчитать дистанцию ​​бега, просто разделите темп в секундах на общее время в секундах. Результат - пройденное расстояние.

Пример: Если темп составляет 7:30 на милю, а общее время составляет 15:00, преобразуйте 7:30 в секунды и 15:00 в секунды, затем разделите на общее время.


7:30 = 450 секунд
15:00 = 900 секунд
900/450 = 2 мили

Как узнать общее время бега с учетом темпа и расстояния

Общее время бега можно определить, используя темп и пройденное расстояние. Преобразуйте темп в секунды, затем умножьте на общее расстояние, чтобы найти затраченное время.

Пример: Если темп составляет 7:30 на милю, а расстояние составляет 2 мили, преобразуйте 7:30 в секунды, затем умножьте на 2.


7:30 = 450 секунд
450 × 2 = 900 секунд

Используйте описанный выше метод для преобразования секунд во время.

Вы также можете найти наши шаги к калькулятору расстояния полезными; он позволяет оценить, как далеко вы пробежали, исходя из количества сделанных шагов.

.

Калькулятор расстояния между двумя точками

Как рассчитать расстояние между 2 точками?

Длина сегмента обычно обозначается с помощью конечных точек без черточки. Например, `\ text {длина AB}` обозначается `\ overline {AB}` или иногда `m \ overline {AB}`. Линейка обычно используется для определения расстояния между двумя точками. Если мы поместим метку «0» в левую конечную точку, а метка, на которую попадает другая конечная точка, будет расстоянием между двумя точками.В общем, от отметки 0 делать замеры не нужно. Согласно постулату линейки, расстояние между двумя точками - это абсолютная величина между числами, указанными на линейке. С другой стороны, если две точки ʻA и B` находятся на оси x, то есть координаты `A и B` равны` (x_A, 0) `и` (x_B, 0) `соответственно, тогда расстояние между двумя точками ʻAB = | x_B −x_A | `. Тот же метод можно применить, чтобы найти расстояние между двумя точками на оси Y. Формула для расстояния между двумя точками в двумерной декартовой координатной плоскости основана на теореме Пифагора .2} `



Расстояние также можно измерить с помощью шкалы на карте. Работа с шагом между двумя точками показывает полное пошаговое вычисление длины отрезка линии, имеющего 2 конечные точки «A» в координатах «(5,3)« и «B» в координатах «(9, 6) `. Для любых других комбинаций конечных точек просто укажите координаты 2 конечных точек и нажмите кнопку «СОЗДАТЬ РАБОТУ». Учащиеся начальной школы могут использовать этот калькулятор расстояний для выполнения работы, проверки результатов или эффективного выполнения домашних заданий..

Смотрите также